File size: 19,334 Bytes
024bcc2 70f44a4 024bcc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The "Psychiatric Treatment Adverse Reactions" (PsyTAR) dataset contains 891 drugs
reviews posted by patients on "askapatient.com", about the effectiveness and adverse
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR.
For each drug review, patient demographics, duration of treatment, and satisfaction
with the drugs were reported.
This dataset can be used for:
1. (multi-label) sentence classification, across 5 labels:
Adverse Drug Reaction (ADR)
Withdrawal Symptoms (WDs)
Sign/Symptoms/Illness (SSIs)
Drug Indications (DIs)
Drug Effectiveness (EF)
Drug Infectiveness (INF)
and Others (not applicable)
2. Recognition of 5 different types of entity:
ADRs (4813 mentions)
WDs (590 mentions)
SSIs (1219 mentions)
DIs (792 mentions)
In the source schema, systematic annotation with UMLS and SNOMED-CT concepts are provided.
"""
import re
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from .bigbiohub import kb_features
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@article{Zolnoori2019,
author = {Maryam Zolnoori and
Kin Wah Fung and
Timothy B. Patrick and
Paul Fontelo and
Hadi Kharrazi and
Anthony Faiola and
Yi Shuan Shirley Wu and
Christina E. Eldredge and
Jake Luo and
Mike Conway and
Jiaxi Zhu and
Soo Kyung Park and
Kelly Xu and
Hamideh Moayyed and
Somaieh Goudarzvand},
title = {A systematic approach for developing a corpus of patient \
reported adverse drug events: A case study for {SSRI} and {SNRI} medications},
journal = {Journal of Biomedical Informatics},
volume = {90},
year = {2019},
url = {https://doi.org/10.1016/j.jbi.2018.12.005},
doi = {10.1016/j.jbi.2018.12.005},
}
"""
_DATASETNAME = "psytar"
_DISPLAYNAME = "PsyTAR"
_DESCRIPTION = """\
The "Psychiatric Treatment Adverse Reactions" (PsyTAR) dataset contains 891 drugs
reviews posted by patients on "askapatient.com", about the effectiveness and adverse
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR.
This dataset can be used for (multi-label) sentence classification of Adverse Drug
Reaction (ADR), Withdrawal Symptoms (WDs), Sign/Symptoms/Illness (SSIs), Drug
Indications (DIs), Drug Effectiveness (EF), Drug Infectiveness (INF) and Others, as well
as for recognition of 5 different types of named entity (in the categories ADRs, WDs,
SSIs and DIs)
"""
_HOMEPAGE = "https://www.askapatient.com/research/pharmacovigilance/corpus-ades-psychiatric-medications.asp"
_LICENSE = 'Creative Commons Attribution 4.0 International'
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
@dataclass
class PsyTARBigBioConfig(BigBioConfig):
schema: str = "source"
name: str = "psytar_source"
version: datasets.Version = _SOURCE_VERSION
description: str = "PsyTAR source schema"
subset_id: str = "psytar"
class PsyTARDataset(datasets.GeneratorBasedBuilder):
"""The PsyTAR dataset contains patient's reviews on the effectiveness and adverse
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
PsyTARBigBioConfig(
name="psytar_source",
version=SOURCE_VERSION,
description="PsyTAR source schema",
schema="source",
subset_id="psytar",
),
PsyTARBigBioConfig(
name="psytar_bigbio_kb",
version=BIGBIO_VERSION,
description="PsyTAR BigBio KB schema",
schema="bigbio_kb",
subset_id="psytar",
),
PsyTARBigBioConfig(
name="psytar_bigbio_text",
version=BIGBIO_VERSION,
description="PsyTAR BigBio text classification schema",
schema="bigbio_text",
subset_id="psytar",
),
]
BUILDER_CONFIG_CLASS = PsyTARBigBioConfig
DEFAULT_CONFIG_NAME = "psytar_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"disorder": datasets.Value("string"),
"side_effect": datasets.Value("string"),
"comment": datasets.Value("string"),
"gender": datasets.Value("string"),
"age": datasets.Value("int32"),
"dosage_duration": datasets.Value("string"),
"date": datasets.Value("string"),
"category": datasets.Value("string"),
"sentences": [
{
"text": datasets.Value("string"),
"label": datasets.Sequence([datasets.Value("string")]),
"findings": datasets.Value("string"),
"others": datasets.Value("string"),
"rating": datasets.Value("string"),
"category": datasets.Value("string"),
"entities": [
{
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"mild": datasets.Value("string"),
"moderate": datasets.Value("string"),
"severe": datasets.Value("string"),
"persistent": datasets.Value("string"),
"non_persistent": datasets.Value("string"),
"body_site": datasets.Value("string"),
"rating": datasets.Value("string"),
"drug": datasets.Value("string"),
"class": datasets.Value("string"),
"entity_type": datasets.Value("string"),
"UMLS": datasets.Sequence(
[datasets.Value("string")]
),
"SNOMED": datasets.Sequence(
[datasets.Value("string")]
),
}
],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": Path(data_dir),
},
),
]
def _extract_labels(self, row):
label = [
"ADR" * row.ADR,
"WD" * row.WD,
"EF" * row.EF,
"INF" * row.INF,
"SSI" * row.SSI,
"DI" * row.DI,
"Others" * row.others,
]
label = [_l for _l in label if _l != ""]
return label
def _columns_to_list(self, row, sheet="ADR"):
annotations = []
for i in range(30 if sheet == "ADR" else 10):
annotations.append(row[f"{sheet}{i + 1}"])
annotations = [a for a in annotations if not pd.isna(a)]
return annotations
def _columns_to_bigbio_kb(self, row, sheet="ADR"):
annotations = []
for i in range(30 if sheet == "ADR" else 10):
annotation = row[f"{sheet}{i + 1}"]
if not pd.isna(annotation):
start_index = row.sentences.lower().find(annotation.lower())
if start_index != -1:
end_index = start_index + len(annotation)
entity = {
"id": f"T{i+1}",
"offsets": [[start_index, end_index]],
"text": [annotation],
"type": sheet,
}
annotations.append(entity)
return annotations
def _standards_columns_to_list(self, row, standard="UMLS"):
standards = {"UMLS": ["UMLS1", "UMLS2"], "SNOMED": ["SNOMED-CT", "SNOMED-CT.1"]}
_out_list = []
for s in standards[standard]:
_out_list.append(row[s])
_out_list = [a for a in _out_list if not pd.isna(a)]
return _out_list
def _read_sentence_xlsx(self, filepath: Path) -> pd.DataFrame:
sentence_df = pd.read_excel(
filepath,
sheet_name="Sentence_Labeling",
dtype={"drug_id": str, "sentences": str},
)
sentence_df = sentence_df.dropna(subset=["sentences"])
sentence_df = sentence_df.loc[
sentence_df.sentences.apply(lambda x: len(x.strip())) > 0
]
sentence_df = sentence_df.fillna(0)
sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]] = (
sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]]
.replace(re.compile("[!* ]+"), 1)
.astype(int)
)
sentence_df["sentence_index"] = sentence_df["sentence_index"].astype("int32")
sentence_df["drug_id"] = sentence_df["drug_id"].astype("str")
return sentence_df
def _read_samples_xlsx(self, filepath: Path) -> pd.DataFrame:
samples_df = pd.read_excel(
filepath, sheet_name="Sample", dtype={"drug_id": str}
)
samples_df["age"] = samples_df["age"].fillna(0).astype(int)
samples_df["drug_id"] = samples_df["drug_id"].astype("str")
return samples_df
def _read_identified_xlsx_to_bigbio_kb(self, filepath: Path) -> Dict:
sheet_names = ["ADR", "WD", "SSI", "DI"]
identified_entities = {}
for sheet in sheet_names:
identified_entities[sheet] = pd.read_excel(
filepath, sheet_name=sheet + "_Identified"
)
identified_entities[sheet]["bigbio_kb"] = identified_entities[sheet].apply(
lambda x: self._columns_to_bigbio_kb(x, sheet), axis=1
)
return identified_entities
TYPE_TO_COLNAME = {"ADR": "ADRs", "DI": "DIs", "SSI": "SSI", "WD": "WDs"}
def _identified_mapped_xlsx_to_df(self, filepath: Path) -> pd.DataFrame:
sheet_names_mapped = [
["ADR_Mapped", "ADR"],
["WD-Mapped ", "WD"],
["SSI_Mapped", "SSI"],
["DI_Mapped", "DI"],
]
_mappings = []
# Read the specific XLSX sheet with _Mapped annotations
for sheet, sheet_short in sheet_names_mapped:
_df_mapping = pd.read_excel(filepath, sheet_name=sheet)
# Correcting column names
if sheet_short in ["WD"]:
_df_mapping = _df_mapping.rename(
columns={"sentence_id": "sentence_index"}
)
# Changing column names to allow concatenation
_df_mapping = _df_mapping.rename(
columns={self.TYPE_TO_COLNAME[sheet_short]: "entity"}
)
# Putting UMLS and SNOMED annotations in a single column
_df_mapping["UMLS"] = _df_mapping.apply(
lambda x: self._standards_columns_to_list(x), axis=1
)
_df_mapping["SNOMED"] = _df_mapping.apply(
lambda x: self._standards_columns_to_list(x, standard="SNOMED"), axis=1
)
_mappings.append(_df_mapping)
df_mappings = pd.concat(_mappings).fillna(0)
df_mappings["sentence_index"] = df_mappings["sentence_index"].astype("int32")
df_mappings["drug_id"] = df_mappings["drug_id"].astype("str")
return df_mappings
def _convert_xlsx_to_source(self, filepath: Path) -> Dict:
# Read XLSX files
df_sentences = self._read_sentence_xlsx(filepath)
df_sentences["label"] = df_sentences.apply(
lambda x: self._extract_labels(x), axis=1
)
df_mappings = self._identified_mapped_xlsx_to_df(filepath)
df_samples = self._read_samples_xlsx(filepath)
# Configure indices
df_samples = df_samples.set_index("drug_id").sort_index()
df_sentences = df_sentences.set_index(
["drug_id", "sentence_index"]
).sort_index()
df_mappings = df_mappings.set_index(["drug_id", "sentence_index"]).sort_index()
# Iterate over samples
for sample_row_id, sample in df_samples.iterrows():
sentences = []
try:
df_sentence_selection = df_sentences.loc[sample_row_id]
# Iterate over sentences
for sentence_row_id, sentence in df_sentence_selection.iterrows():
entities = []
try:
df_mapped_selection = df_mappings.loc[
sample_row_id, sentence_row_id
]
# Iterate over entities per sentence
for mapped_row_id, row in df_mapped_selection.iterrows():
entities.append(
{
"text": row["entity"],
"UMLS": row.UMLS,
"SNOMED": row.SNOMED,
"entity_type": row.entity_type,
"type": row.type,
"class": row["class"],
"drug": row.drug,
"rating": row.rating,
"body_site": row["body-site"],
"non_persistent": row["not-persistent"],
"persistent": row["persistent"],
"severe": row.severe,
"moderate": row.moderate,
"mild": row.mild,
}
)
except KeyError:
pass
sentences.append(
{
"text": sentence.sentences,
"entities": entities,
"label": sentence.label,
"findings": sentence.Findings,
"others": sentence.others,
"rating": sentence.rating,
"category": sentence.category,
}
)
except KeyError:
pass
example = {
"id": sample_row_id,
"doc_id": sample_row_id,
"disorder": sample.disorder,
"side_effect": sample["side-effect"],
"comment": sample.comment,
"gender": sample.gender,
"age": sample.age,
"dosage_duration": sample.dosage_duration,
"date": str(sample.date),
"category": sample.category,
"sentences": sentences,
}
yield example
def _convert_xlsx_to_bigbio_kb(self, filepath: Path) -> Dict:
bigbio_kb = self._read_identified_xlsx_to_bigbio_kb(filepath)
i_doc = 0
for _, df in bigbio_kb.items():
for _, row in df.iterrows():
text = row.sentences
entities = row["bigbio_kb"]
doc_id = f"{row['drug_id']}_{row['sentence_index']}_{i_doc}"
if len(entities) != 0:
example = parsing.brat_parse_to_bigbio_kb(
{
"document_id": doc_id,
"text": text,
"text_bound_annotations": entities,
"normalizations": [],
"events": [],
"relations": [],
"equivalences": [],
"attributes": [],
},
)
example["id"] = i_doc
i_doc += 1
yield example
def _convert_xlsx_to_bigbio_text(self, filepath: Path) -> Dict:
df = self._read_sentence_xlsx(filepath)
df["label"] = df.apply(lambda x: self._extract_labels(x), axis=1)
for idx, row in df.iterrows():
example = {
"id": idx,
"document_id": f"{row['drug_id']}_{row['sentence_index']}",
"text": row["label"],
"labels": row["category"],
}
yield example
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
examples = self._convert_xlsx_to_source(filepath)
elif self.config.schema == "bigbio_kb":
examples = self._convert_xlsx_to_bigbio_kb(filepath)
elif self.config.schema == "bigbio_text":
examples = self._convert_xlsx_to_bigbio_text(filepath)
for idx, example in enumerate(examples):
yield idx, example
|