|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import itertools as it |
|
from typing import Dict, Generator, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, kb_features |
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = True |
|
_LOCAL = False |
|
|
|
_CITATION = """\ |
|
@article{cho2022plant, |
|
author = {Cho, Hyejin and Kim, Baeksoo and Choi, Wonjun and Lee, Doheon and Lee, Hyunju}, |
|
title = {Plant phenotype relationship corpus for biomedical relationships between plants and phenotypes}, |
|
journal = {Scientific Data}, |
|
volume = {9}, |
|
year = {2022}, |
|
publisher = {Nature Publishing Group}, |
|
doi = {https://doi.org/10.1038/s41597-022-01350-1}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ppr" |
|
_DISPLAYNAME = "Plant-Phenotype-Relations" |
|
|
|
_DESCRIPTION = """\ |
|
The Plant-Phenotype corpus is a text corpus with human annotations of plants, phenotypes, and their relations on a \ |
|
corpus in 600 PubMed abstracts. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/DMCB-GIST/PPRcorpus" |
|
|
|
_LICENSE = "UNKNOWN" |
|
|
|
_URLS = { |
|
_DATASETNAME: [ |
|
"https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_train_corpus.txt", |
|
"https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_dev_corpus.txt", |
|
"https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_test_corpus.txt", |
|
], |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class PlantPhenotypeDataset(datasets.GeneratorBasedBuilder): |
|
"""Plant-Phenotype is dataset for NER and RE of plants and their induced phenotypes""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="ppr_source", |
|
version=SOURCE_VERSION, |
|
description="Plant Phenotype Relations source schema", |
|
schema="source", |
|
subset_id="plant_phenotype", |
|
), |
|
BigBioConfig( |
|
name="ppr_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="Plant Phenotype Relations BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="plant_phenotype", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ppr_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"passage_id": datasets.Value("string"), |
|
"pmid": datasets.Value("string"), |
|
"section": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"offsets": datasets.Sequence(datasets.Value("int32")), |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"relation_type": datasets.Value("string"), |
|
"entity1_offsets": datasets.Sequence(datasets.Value("int32")), |
|
"entity1_text": datasets.Value("string"), |
|
"entity1_type": datasets.Value("string"), |
|
"entity2_offsets": datasets.Sequence(datasets.Value("int32")), |
|
"entity2_text": datasets.Value("string"), |
|
"entity2_type": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
else: |
|
raise NotImplementedError(f"Schema {self.config.schema} not supported") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
train, dev, test = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": dev, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
filepath, |
|
) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, "r") as f: |
|
chunks = f.read().strip().split("\n\n") |
|
|
|
if self.config.schema == "source": |
|
for id_, doc in self._generate_source_examples(chunks): |
|
yield id_, doc |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for id_, doc in self._generate_bigbio_kb_examples(chunks): |
|
yield id_, doc |
|
|
|
def _generate_whole_documents(self, annotation_chunks: List[str]) -> Generator[Dict, None, None]: |
|
"""Aggregate individual sentence annotations into whole abstracts. |
|
|
|
Args: |
|
annotation_chunks (List[str]): List of annotation chunks, i.e., a sentence with its annotations. |
|
For example: |
|
10072339_4 OBJECTIVE: A patient with possible airborne facial dermatitis to potato is described. |
|
10072339 44 61 facial dermatitis Negative_phenotype |
|
10072339 65 71 potato Plant |
|
|
|
Returns: |
|
Generator producing a dictionary containing the pmid of an article and all document chunks. |
|
""" |
|
prev_pmid = None |
|
pmid = "" |
|
doc_chunks = [] |
|
|
|
for chunk in annotation_chunks: |
|
lines = chunk.split("\n") |
|
|
|
|
|
passage_info, passage_text = lines[0].split("\t") |
|
|
|
|
|
annotations = [line.split("\t") for line in lines[1:]] |
|
|
|
|
|
pmid, section = passage_info.split("_") |
|
if prev_pmid is None: |
|
prev_pmid = pmid |
|
|
|
elif prev_pmid != pmid: |
|
yield {"pmid": prev_pmid, "doc_chunks": doc_chunks} |
|
|
|
|
|
prev_pmid = pmid |
|
doc_chunks = [] |
|
|
|
doc_chunks.append( |
|
{ |
|
"passage": passage_text, |
|
"annotations": annotations, |
|
"sentence_id": passage_info, |
|
} |
|
) |
|
|
|
|
|
yield {"pmid": pmid, "doc_chunks": doc_chunks} |
|
|
|
def _generate_source_examples(self, annotation_chunks: List[str]) -> Generator[Tuple[str, Dict], None, None]: |
|
"""Generate examples in format of source schema |
|
|
|
Args: |
|
annotation_chunks (List[str]): List of annotation chunks. |
|
|
|
Returns: |
|
Generator of instance tuples (<key>, <instance-dict>) |
|
""" |
|
for chunk in annotation_chunks: |
|
lines = chunk.split("\n") |
|
|
|
passage_id, passage_text = lines[0].split("\t") |
|
annotations = [line.split("\t") for line in lines[1:]] |
|
|
|
|
|
pmid, section = passage_id.split("_") |
|
section = int(section) |
|
|
|
|
|
entities = [] |
|
relations = [] |
|
for annotation in annotations: |
|
if len(annotation) == 5: |
|
|
|
entities.append( |
|
{ |
|
"offsets": (int(annotation[1]), int(annotation[2])), |
|
"text": annotation[3], |
|
"type": annotation[4], |
|
} |
|
) |
|
|
|
elif len(annotation) == 10: |
|
|
|
relations.append( |
|
{ |
|
"relation_type": annotation[1], |
|
"entity1_offsets": (int(annotation[2]), int(annotation[3])), |
|
"entity1_text": annotation[4], |
|
"entity1_type": annotation[5], |
|
"entity2_offsets": (int(annotation[6]), int(annotation[7])), |
|
"entity2_text": annotation[8], |
|
"entity2_type": annotation[9], |
|
} |
|
) |
|
else: |
|
|
|
relations.append( |
|
{ |
|
"relation_type": annotation[1], |
|
"entity1_offsets": (int(annotation[2]), int(annotation[3])), |
|
"entity1_text": annotation[4], |
|
"entity1_type": annotation[5], |
|
"entity2_offsets": (int(annotation[8]), int(annotation[9])), |
|
"entity2_text": annotation[10], |
|
"entity2_type": annotation[11], |
|
} |
|
) |
|
|
|
|
|
document = { |
|
"passage_id": passage_id, |
|
"pmid": pmid, |
|
"section": section, |
|
"text": passage_text, |
|
"entities": entities, |
|
"relations": relations, |
|
} |
|
|
|
yield passage_id, document |
|
|
|
def _generate_bigbio_kb_examples(self, annotation_chunks: List[str]): |
|
"""Generator for training examples in bigbio_kb schema format. |
|
|
|
Args: |
|
annotation_chunks (List[str]): List of annotation chunks. |
|
|
|
Returns: |
|
Generator of instance tuples (<key>, <instance-dict>) |
|
""" |
|
uid = it.count(1) |
|
for document in self._generate_whole_documents(annotation_chunks): |
|
pmid = document["pmid"] |
|
offset_delta = 0 |
|
id_ = str(next(uid)) |
|
|
|
passages = [] |
|
entities = [] |
|
relations = [] |
|
|
|
|
|
for text_section in document["doc_chunks"]: |
|
|
|
passage = text_section["passage"] |
|
passages.append( |
|
{ |
|
"id": str(next(uid)), |
|
"text": [passage], |
|
"type": "sentence", |
|
"offsets": [(offset_delta, offset_delta + len(passage))], |
|
} |
|
) |
|
|
|
|
|
entities_sublist = [] |
|
for annotation in text_section["annotations"]: |
|
if len(annotation) == 5: |
|
entities_sublist.append( |
|
{ |
|
"id": str(next(uid)), |
|
"type": annotation[4], |
|
"text": [annotation[3]], |
|
"offsets": [(int(annotation[1]) + offset_delta, int(annotation[2]) + offset_delta)], |
|
"normalized": [], |
|
} |
|
) |
|
|
|
|
|
ent2id = {tuple(x["offsets"]): x["id"] for x in entities_sublist} |
|
entities.extend(entities_sublist) |
|
|
|
|
|
for annotation in text_section["annotations"]: |
|
if len(annotation) == 10: |
|
e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)] |
|
e2_offsets = [(int(annotation[6]) + offset_delta, int(annotation[7]) + offset_delta)] |
|
relations.append( |
|
{ |
|
"id": str(next(uid)), |
|
"type": annotation[1], |
|
"arg1_id": ent2id[tuple(e1_offsets)], |
|
"arg2_id": ent2id[tuple(e2_offsets)], |
|
"normalized": [], |
|
} |
|
) |
|
|
|
|
|
elif len(annotation) > 10: |
|
e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)] |
|
e2_offsets = [(int(annotation[8]) + offset_delta, int(annotation[9]) + offset_delta)] |
|
relations.append( |
|
{ |
|
"id": str(next(uid)), |
|
"type": annotation[1], |
|
"arg1_id": ent2id[tuple(e1_offsets)], |
|
"arg2_id": ent2id[tuple(e2_offsets)], |
|
"normalized": [], |
|
} |
|
) |
|
|
|
offset_delta += len(passage) + 1 |
|
|
|
doc = { |
|
"id": id_, |
|
"document_id": pmid, |
|
"passages": passages, |
|
"entities": entities, |
|
"relations": relations, |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
|
|
yield id_, doc |
|
|