# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools as it from typing import Dict, Generator, List, Tuple import datasets from .bigbiohub import BigBioConfig, Tasks, kb_features _LANGUAGES = ["English"] _PUBMED = True _LOCAL = False _CITATION = """\ @article{cho2022plant, author = {Cho, Hyejin and Kim, Baeksoo and Choi, Wonjun and Lee, Doheon and Lee, Hyunju}, title = {Plant phenotype relationship corpus for biomedical relationships between plants and phenotypes}, journal = {Scientific Data}, volume = {9}, year = {2022}, publisher = {Nature Publishing Group}, doi = {https://doi.org/10.1038/s41597-022-01350-1}, } """ _DATASETNAME = "ppr" _DISPLAYNAME = "Plant-Phenotype-Relations" _DESCRIPTION = """\ The Plant-Phenotype corpus is a text corpus with human annotations of plants, phenotypes, and their relations on a \ corpus in 600 PubMed abstracts. """ _HOMEPAGE = "https://github.com/DMCB-GIST/PPRcorpus" _LICENSE = "UNKNOWN" _URLS = { _DATASETNAME: [ "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_train_corpus.txt", "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_dev_corpus.txt", "https://raw.githubusercontent.com/davidkartchner/PPRcorpus/main/corpus/PPR_test_corpus.txt", ], } _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] _SOURCE_VERSION = "1.0.0" _BIGBIO_VERSION = "1.0.0" class PlantPhenotypeDataset(datasets.GeneratorBasedBuilder): """Plant-Phenotype is dataset for NER and RE of plants and their induced phenotypes""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) BUILDER_CONFIGS = [ BigBioConfig( name="ppr_source", version=SOURCE_VERSION, description="Plant Phenotype Relations source schema", schema="source", subset_id="plant_phenotype", ), BigBioConfig( name="ppr_bigbio_kb", version=BIGBIO_VERSION, description="Plant Phenotype Relations BigBio schema", schema="bigbio_kb", subset_id="plant_phenotype", ), ] DEFAULT_CONFIG_NAME = "ppr_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "passage_id": datasets.Value("string"), "pmid": datasets.Value("string"), "section": datasets.Value("int32"), "text": datasets.Value("string"), "entities": [ { "offsets": datasets.Sequence(datasets.Value("int32")), "text": datasets.Value("string"), "type": datasets.Value("string"), } ], "relations": [ { "relation_type": datasets.Value("string"), "entity1_offsets": datasets.Sequence(datasets.Value("int32")), "entity1_text": datasets.Value("string"), "entity1_type": datasets.Value("string"), "entity2_offsets": datasets.Sequence(datasets.Value("int32")), "entity2_text": datasets.Value("string"), "entity2_type": datasets.Value("string"), } ], } ) elif self.config.schema == "bigbio_kb": features = kb_features else: raise NotImplementedError(f"Schema {self.config.schema} not supported") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] train, dev, test = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": dev, }, ), ] def _generate_examples( self, filepath, ) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" with open(filepath, "r") as f: chunks = f.read().strip().split("\n\n") if self.config.schema == "source": for id_, doc in self._generate_source_examples(chunks): yield id_, doc elif self.config.schema == "bigbio_kb": for id_, doc in self._generate_bigbio_kb_examples(chunks): yield id_, doc def _generate_whole_documents(self, annotation_chunks: List[str]) -> Generator[Dict, None, None]: """Aggregate individual sentence annotations into whole abstracts. Args: annotation_chunks (List[str]): List of annotation chunks, i.e., a sentence with its annotations. For example: 10072339_4 OBJECTIVE: A patient with possible airborne facial dermatitis to potato is described. 10072339 44 61 facial dermatitis Negative_phenotype 10072339 65 71 potato Plant Returns: Generator producing a dictionary containing the pmid of an article and all document chunks. """ prev_pmid = None pmid = "" doc_chunks = [] for chunk in annotation_chunks: lines = chunk.split("\n") # The first line is the sentence (format: _\t) passage_info, passage_text = lines[0].split("\t") # Then annotations in Pubtator format annotations = [line.split("\t") for line in lines[1:]] # Get info on passage pmid, section = passage_info.split("_") if prev_pmid is None: prev_pmid = pmid elif prev_pmid != pmid: yield {"pmid": prev_pmid, "doc_chunks": doc_chunks} # Reset everything for next PMID prev_pmid = pmid doc_chunks = [] doc_chunks.append( { "passage": passage_text, "annotations": annotations, "sentence_id": passage_info, } ) # Take care of last document yield {"pmid": pmid, "doc_chunks": doc_chunks} def _generate_source_examples(self, annotation_chunks: List[str]) -> Generator[Tuple[str, Dict], None, None]: """Generate examples in format of source schema Args: annotation_chunks (List[str]): List of annotation chunks. Returns: Generator of instance tuples (, ) """ for chunk in annotation_chunks: lines = chunk.split("\n") passage_id, passage_text = lines[0].split("\t") annotations = [line.split("\t") for line in lines[1:]] # Get info on passage pmid, section = passage_id.split("_") section = int(section) # Grab entities and relations entities = [] relations = [] for annotation in annotations: if len(annotation) == 5: # It's an entity annotation entities.append( { "offsets": (int(annotation[1]), int(annotation[2])), "text": annotation[3], "type": annotation[4], } ) elif len(annotation) == 10: # Relation annotation relations.append( { "relation_type": annotation[1], "entity1_offsets": (int(annotation[2]), int(annotation[3])), "entity1_text": annotation[4], "entity1_type": annotation[5], "entity2_offsets": (int(annotation[6]), int(annotation[7])), "entity2_text": annotation[8], "entity2_type": annotation[9], } ) else: # This is a special case that occurs for a single data point relations.append( { "relation_type": annotation[1], "entity1_offsets": (int(annotation[2]), int(annotation[3])), "entity1_text": annotation[4], "entity1_type": annotation[5], "entity2_offsets": (int(annotation[8]), int(annotation[9])), "entity2_text": annotation[10], "entity2_type": annotation[11], } ) # Consolidate into document document = { "passage_id": passage_id, "pmid": pmid, "section": section, "text": passage_text, "entities": entities, "relations": relations, } yield passage_id, document def _generate_bigbio_kb_examples(self, annotation_chunks: List[str]): """Generator for training examples in bigbio_kb schema format. Args: annotation_chunks (List[str]): List of annotation chunks. Returns: Generator of instance tuples (, ) """ uid = it.count(1) for document in self._generate_whole_documents(annotation_chunks): pmid = document["pmid"] offset_delta = 0 id_ = str(next(uid)) passages = [] entities = [] relations = [] # Iterate through each section of the article for text_section in document["doc_chunks"]: # Extract passages passage = text_section["passage"] passages.append( { "id": str(next(uid)), "text": [passage], "type": "sentence", "offsets": [(offset_delta, offset_delta + len(passage))], } ) # Extract entities entities_sublist = [] for annotation in text_section["annotations"]: if len(annotation) == 5: entities_sublist.append( { "id": str(next(uid)), "type": annotation[4], "text": [annotation[3]], "offsets": [(int(annotation[1]) + offset_delta, int(annotation[2]) + offset_delta)], "normalized": [], } ) # Create mapping of offsets to entity_id ent2id = {tuple(x["offsets"]): x["id"] for x in entities_sublist} entities.extend(entities_sublist) # Extract relations for annotation in text_section["annotations"]: if len(annotation) == 10: e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)] e2_offsets = [(int(annotation[6]) + offset_delta, int(annotation[7]) + offset_delta)] relations.append( { "id": str(next(uid)), "type": annotation[1], "arg1_id": ent2id[tuple(e1_offsets)], "arg2_id": ent2id[tuple(e2_offsets)], "normalized": [], } ) # Special case for a single annotation elif len(annotation) > 10: e1_offsets = [(int(annotation[2]) + offset_delta, int(annotation[3]) + offset_delta)] e2_offsets = [(int(annotation[8]) + offset_delta, int(annotation[9]) + offset_delta)] relations.append( { "id": str(next(uid)), "type": annotation[1], "arg1_id": ent2id[tuple(e1_offsets)], "arg2_id": ent2id[tuple(e2_offsets)], "normalized": [], } ) offset_delta += len(passage) + 1 doc = { "id": id_, "document_id": pmid, "passages": passages, "entities": entities, "relations": relations, "events": [], "coreferences": [], } yield id_, doc