Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 11,194 Bytes
a0626f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import itertools
import os
import uuid
import xml.etree.ElementTree as ET
from typing import List

import datasets
from numpy import int32

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@ARTICLE{Furlong2008,
  author = {Laura I Furlong and Holger Dach and Martin Hofmann-Apitius and Ferran Sanz},
  title = {OSIRISv1.2: a named entity recognition system for sequence variants
  of genes in biomedical literature.},
  journal = {BMC Bioinformatics},
  year = {2008},
  volume = {9},
  pages = {84},
  doi = {10.1186/1471-2105-9-84},
  pii = {1471-2105-9-84},
  pmid = {18251998},
  timestamp = {2013.01.15},
  url = {http://dx.doi.org/10.1186/1471-2105-9-84}
}
"""

_DATASETNAME = "osiris"
_DISPLAYNAME = "OSIRIS"

_DESCRIPTION = """\
The OSIRIS corpus is a set of MEDLINE abstracts manually annotated
with human variation mentions. The corpus is distributed under the terms
of the Creative Commons Attribution License
Creative Commons Attribution 3.0 Unported License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (Furlong et al, BMC Bioinformatics 2008, 9:84).
"""

_HOMEPAGE = "https://sites.google.com/site/laurafurlongweb/databases-and-tools/corpora/"


_LICENSE = 'Creative Commons Attribution 3.0 Unported'

_URLS = {
    _DATASETNAME: [
        "https://github.com/rockt/SETH/blob/master/resources/OSIRIS/corpus.xml?raw=true "
    ]
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]


_SOURCE_VERSION = "1.2.0"

_BIGBIO_VERSION = "1.0.0"


class Osiris(datasets.GeneratorBasedBuilder):
    """
    The OSIRIS corpus is a set of MEDLINE abstracts manually annotated
    with human variation mentions.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    # You will be able to load the "source" or "bigbio" configurations with
    # ds_source = datasets.load_dataset('my_dataset', name='source')
    # ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio')

    # For local datasets you can make use of the `data_dir` and `data_files` kwargs
    # https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
    # ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
    # ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files")

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="osiris_source",
            version=SOURCE_VERSION,
            description="osiris source schema",
            schema="source",
            subset_id="osiris",
        ),
        BigBioConfig(
            name="osiris_bigbio_kb",
            version=BIGBIO_VERSION,
            description="osiris BigBio schema",
            schema="bigbio_kb",
            subset_id="osiris",
        ),
    ]

    DEFAULT_CONFIG_NAME = "osiris_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "Pmid": datasets.Value("string"),
                    "Title": datasets.Value("string"),
                    "Abstract": datasets.Value("string"),
                    "genes": [
                        {
                            "g_id": datasets.Value("string"),
                            "g_lex": datasets.Value("string"),
                            "offsets": [[datasets.Value("int32")]],
                        }
                    ],
                    "variants": [
                        {
                            "v_id": datasets.Value("string"),
                            "v_lex": datasets.Value("string"),
                            "v_norm": datasets.Value("string"),
                            "offsets": [[datasets.Value("int32")]],
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:

        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir[0]),
                    "split": "data",
                },
            )
        ]

    def _get_offsets(self, parent: ET.Element, child: ET.Element) -> List[int32]:
        """
        Retrieves character offsets for child from parent.
        """
        parent_text = " ".join(
            [
                " ".join([t for t in c.itertext()])
                for c in list(parent)
                if c.tag != "Pmid"
            ]
        )
        child_text = " ".join([t for t in child.itertext()])
        start = parent_text.index(child_text)
        end = start + len(child_text)
        return [start, end]

    def _get_dict(self, elem: ET.Element) -> dict:
        """
        Retrieves dict from XML element.
        """
        elem_d = dict()
        for child in elem:
            elem_d[child.tag] = {}
            elem_d[child.tag]["text"] = " ".join([t for t in child.itertext()])

            if child.tag != "Pmid":
                elem_d[child.tag]["offsets"] = self._get_offsets(elem, child)

            for c in child:
                elem_d[c.tag] = []

            for c in child:
                c_dict = c.attrib
                c_dict["offsets"] = self._get_offsets(elem, c)
                elem_d[c.tag].append(c.attrib)

        return elem_d

    def _handle_missing_variants(self, row: dict) -> dict:
        """
        If variant is not present in the row this function adds one variant
        with no data (to make looping though items possible) and returns the new row.
        These mocked variants will be romoved after parsing.
        Otherwise returns unchanged row.
        """

        if row.get("variant", 0) == 0:
            row["variant"] = [
                {"v_id": "", "v_lex": "", "v_norm": "", "offsets": [0, 0]}
            ]
        return row

    def _get_entities(self, row: dict) -> List[dict]:
        """
        Retrieves two lists of dicts for genes and variants.
        After that, chains both together.
        """
        genes = [
            {
                "id": str(uuid.uuid4()),
                "offsets": [gene["offsets"]],
                "text": [gene["g_lex"]],
                "type": "gene",
                "normalized": [{"db_name": "NCBI Gene", "db_id": gene["g_id"]}],
            }
            for gene in row["gene"]
        ]

        variants = [
            {
                "id": str(uuid.uuid4()),
                "offsets": [variant["offsets"]],
                "text": [variant["v_lex"]],
                "type": "variant",
                "normalized": [
                    {
                        "db_name": "HGVS-like" if variant["v_id"] == "No" else "dbSNP",
                        "db_id": variant["v_norm"]
                        if variant["v_id"] == "No"
                        else variant["v_id"],
                    }
                ],
            }
            for variant in row["variant"]
            if variant["v_id"] != ""
        ]
        return list(itertools.chain(genes, variants))

    def _generate_examples(self, filepath, split):

        root = ET.parse(filepath).getroot()
        uid = 0
        if self.config.schema == "source":
            for elem in list(root):
                row = self._get_dict(elem)

                # handling missing variants data
                row = self._handle_missing_variants(row)
                uid += 1
                yield uid, {
                    "Pmid": row["Pmid"]["text"],
                    "Title": {
                        "offsets": [row["Title"]["offsets"]],
                        "text": row["Title"]["text"],
                    },
                    "Abstract": {
                        "offsets": [row["Abstract"]["offsets"]],
                        "text": row["Abstract"]["text"],
                    },
                    "genes": [
                        {
                            "g_id": gene["g_id"],
                            "g_lex": gene["g_lex"],
                            "offsets": [gene["offsets"]],
                        }
                        for gene in row["gene"]
                    ],
                    "variants": [
                        {
                            "v_id": variant["v_id"],
                            "v_lex": variant["v_lex"],
                            "v_norm": variant["v_norm"],
                            "offsets": [variant["offsets"]],
                        }
                        for variant in row["variant"]
                    ],
                }

        elif self.config.schema == "bigbio_kb":

            for elem in list(root):
                row = self._get_dict(elem)

                # handling missing variants data
                row = self._handle_missing_variants(row)
                uid += 1
                yield uid, {
                    "id": str(uid),
                    "document_id": row["Pmid"]["text"],
                    "passages": [
                        {
                            "id": str(uuid.uuid4()),
                            "type": "title",
                            "text": [row["Title"]["text"]],
                            "offsets": [row["Title"]["offsets"]],
                        },
                        {
                            "id": str(uuid.uuid4()),
                            "type": "abstract",
                            "text": [row["Abstract"]["text"]],
                            "offsets": [row["Abstract"]["offsets"]],
                        },
                    ],
                    "entities": self._get_entities(row),
                    "relations": [],
                    "events": [],
                    "coreferences": [],
                }