File size: 11,194 Bytes
a0626f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import uuid
import xml.etree.ElementTree as ET
from typing import List
import datasets
from numpy import int32
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@ARTICLE{Furlong2008,
author = {Laura I Furlong and Holger Dach and Martin Hofmann-Apitius and Ferran Sanz},
title = {OSIRISv1.2: a named entity recognition system for sequence variants
of genes in biomedical literature.},
journal = {BMC Bioinformatics},
year = {2008},
volume = {9},
pages = {84},
doi = {10.1186/1471-2105-9-84},
pii = {1471-2105-9-84},
pmid = {18251998},
timestamp = {2013.01.15},
url = {http://dx.doi.org/10.1186/1471-2105-9-84}
}
"""
_DATASETNAME = "osiris"
_DISPLAYNAME = "OSIRIS"
_DESCRIPTION = """\
The OSIRIS corpus is a set of MEDLINE abstracts manually annotated
with human variation mentions. The corpus is distributed under the terms
of the Creative Commons Attribution License
Creative Commons Attribution 3.0 Unported License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (Furlong et al, BMC Bioinformatics 2008, 9:84).
"""
_HOMEPAGE = "https://sites.google.com/site/laurafurlongweb/databases-and-tools/corpora/"
_LICENSE = 'Creative Commons Attribution 3.0 Unported'
_URLS = {
_DATASETNAME: [
"https://github.com/rockt/SETH/blob/master/resources/OSIRIS/corpus.xml?raw=true "
]
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.2.0"
_BIGBIO_VERSION = "1.0.0"
class Osiris(datasets.GeneratorBasedBuilder):
"""
The OSIRIS corpus is a set of MEDLINE abstracts manually annotated
with human variation mentions.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
# You will be able to load the "source" or "bigbio" configurations with
# ds_source = datasets.load_dataset('my_dataset', name='source')
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio')
# For local datasets you can make use of the `data_dir` and `data_files` kwargs
# https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
# ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files")
BUILDER_CONFIGS = [
BigBioConfig(
name="osiris_source",
version=SOURCE_VERSION,
description="osiris source schema",
schema="source",
subset_id="osiris",
),
BigBioConfig(
name="osiris_bigbio_kb",
version=BIGBIO_VERSION,
description="osiris BigBio schema",
schema="bigbio_kb",
subset_id="osiris",
),
]
DEFAULT_CONFIG_NAME = "osiris_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"Pmid": datasets.Value("string"),
"Title": datasets.Value("string"),
"Abstract": datasets.Value("string"),
"genes": [
{
"g_id": datasets.Value("string"),
"g_lex": datasets.Value("string"),
"offsets": [[datasets.Value("int32")]],
}
],
"variants": [
{
"v_id": datasets.Value("string"),
"v_lex": datasets.Value("string"),
"v_norm": datasets.Value("string"),
"offsets": [[datasets.Value("int32")]],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir[0]),
"split": "data",
},
)
]
def _get_offsets(self, parent: ET.Element, child: ET.Element) -> List[int32]:
"""
Retrieves character offsets for child from parent.
"""
parent_text = " ".join(
[
" ".join([t for t in c.itertext()])
for c in list(parent)
if c.tag != "Pmid"
]
)
child_text = " ".join([t for t in child.itertext()])
start = parent_text.index(child_text)
end = start + len(child_text)
return [start, end]
def _get_dict(self, elem: ET.Element) -> dict:
"""
Retrieves dict from XML element.
"""
elem_d = dict()
for child in elem:
elem_d[child.tag] = {}
elem_d[child.tag]["text"] = " ".join([t for t in child.itertext()])
if child.tag != "Pmid":
elem_d[child.tag]["offsets"] = self._get_offsets(elem, child)
for c in child:
elem_d[c.tag] = []
for c in child:
c_dict = c.attrib
c_dict["offsets"] = self._get_offsets(elem, c)
elem_d[c.tag].append(c.attrib)
return elem_d
def _handle_missing_variants(self, row: dict) -> dict:
"""
If variant is not present in the row this function adds one variant
with no data (to make looping though items possible) and returns the new row.
These mocked variants will be romoved after parsing.
Otherwise returns unchanged row.
"""
if row.get("variant", 0) == 0:
row["variant"] = [
{"v_id": "", "v_lex": "", "v_norm": "", "offsets": [0, 0]}
]
return row
def _get_entities(self, row: dict) -> List[dict]:
"""
Retrieves two lists of dicts for genes and variants.
After that, chains both together.
"""
genes = [
{
"id": str(uuid.uuid4()),
"offsets": [gene["offsets"]],
"text": [gene["g_lex"]],
"type": "gene",
"normalized": [{"db_name": "NCBI Gene", "db_id": gene["g_id"]}],
}
for gene in row["gene"]
]
variants = [
{
"id": str(uuid.uuid4()),
"offsets": [variant["offsets"]],
"text": [variant["v_lex"]],
"type": "variant",
"normalized": [
{
"db_name": "HGVS-like" if variant["v_id"] == "No" else "dbSNP",
"db_id": variant["v_norm"]
if variant["v_id"] == "No"
else variant["v_id"],
}
],
}
for variant in row["variant"]
if variant["v_id"] != ""
]
return list(itertools.chain(genes, variants))
def _generate_examples(self, filepath, split):
root = ET.parse(filepath).getroot()
uid = 0
if self.config.schema == "source":
for elem in list(root):
row = self._get_dict(elem)
# handling missing variants data
row = self._handle_missing_variants(row)
uid += 1
yield uid, {
"Pmid": row["Pmid"]["text"],
"Title": {
"offsets": [row["Title"]["offsets"]],
"text": row["Title"]["text"],
},
"Abstract": {
"offsets": [row["Abstract"]["offsets"]],
"text": row["Abstract"]["text"],
},
"genes": [
{
"g_id": gene["g_id"],
"g_lex": gene["g_lex"],
"offsets": [gene["offsets"]],
}
for gene in row["gene"]
],
"variants": [
{
"v_id": variant["v_id"],
"v_lex": variant["v_lex"],
"v_norm": variant["v_norm"],
"offsets": [variant["offsets"]],
}
for variant in row["variant"]
],
}
elif self.config.schema == "bigbio_kb":
for elem in list(root):
row = self._get_dict(elem)
# handling missing variants data
row = self._handle_missing_variants(row)
uid += 1
yield uid, {
"id": str(uid),
"document_id": row["Pmid"]["text"],
"passages": [
{
"id": str(uuid.uuid4()),
"type": "title",
"text": [row["Title"]["text"]],
"offsets": [row["Title"]["offsets"]],
},
{
"id": str(uuid.uuid4()),
"type": "abstract",
"text": [row["Abstract"]["text"]],
"offsets": [row["Abstract"]["offsets"]],
},
],
"entities": self._get_entities(row),
"relations": [],
"events": [],
"coreferences": [],
}
|