File size: 9,755 Bytes
d685881 bb7c706 d685881 bb7c706 d685881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The NCBI disease corpus is fully annotated at the mention and concept level to serve as a research
resource for the biomedical natural language processing community.
"""
import os
from typing import Dict, Iterator, List, Tuple
import datasets
from bioc import pubtator
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{Dogan2014NCBIDC,
title = {NCBI disease corpus: A resource for disease name recognition and concept normalization},
author = {Rezarta Islamaj Dogan and Robert Leaman and Zhiyong Lu},
year = 2014,
journal = {Journal of biomedical informatics},
volume = 47,
pages = {1--10}
}
"""
_DATASETNAME = "ncbi_disease"
_DISPLAYNAME = "NCBI Disease"
_DESCRIPTION = """\
The NCBI disease corpus is fully annotated at the mention and concept level to serve as a research
resource for the biomedical natural language processing community.
"""
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/"
_LICENSE = 'Creative Commons Zero v1.0 Universal'
_URLS = {
_DATASETNAME: {
datasets.Split.TRAIN: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBItrainset_corpus.zip",
datasets.Split.TEST: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBItestset_corpus.zip",
datasets.Split.VALIDATION: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBIdevelopset_corpus.zip",
}
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class NCBIDiseaseDataset(datasets.GeneratorBasedBuilder):
"""NCBI Disease"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="ncbi_disease_source",
version=SOURCE_VERSION,
description="NCBI Disease source schema",
schema="source",
subset_id="ncbi_disease",
),
BigBioConfig(
name="ncbi_disease_bigbio_kb",
version=BIGBIO_VERSION,
description="NCBI Disease BigBio schema",
schema="bigbio_kb",
subset_id="ncbi_disease",
),
]
DEFAULT_CONFIG_NAME = "ncbi_disease_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"mentions": [
{
"concept_id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"offsets": datasets.Sequence(datasets.Value("int32")),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
train_filename = "NCBItrainset_corpus.txt"
test_filename = "NCBItestset_corpus.txt"
dev_filename = "NCBIdevelopset_corpus.txt"
train_filepath = os.path.join(data_dir[datasets.Split.TRAIN], train_filename)
test_filepath = os.path.join(data_dir[datasets.Split.TEST], test_filename)
dev_filepath = os.path.join(data_dir[datasets.Split.VALIDATION], dev_filename)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_filepath,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_filepath,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dev_filepath,
"split": "dev",
},
),
]
def _generate_examples(
self, filepath: str, split: str
) -> Iterator[Tuple[str, Dict]]:
if self.config.schema == "source":
for i, source_example in enumerate(self._pubtator_to_source(filepath)):
# Some examples are duplicated in NCBI Disease. We have to make them unique to
# avoid and error from datasets.
yield str(i) + "_" + source_example["pmid"], source_example
elif self.config.schema == "bigbio_kb":
seen = []
for kb_example in self._pubtator_to_bigbio_kb(filepath):
# Some examples are duplicated in NCBI Disease. Avoid yielding more than once.
if kb_example["id"] in seen:
continue
yield kb_example["id"], kb_example
seen.append(kb_example["id"])
@staticmethod
def _pubtator_to_source(filepath: Dict) -> Iterator[Dict]:
with open(filepath, "r") as f:
for doc in pubtator.iterparse(f):
source_example = {
"pmid": doc.pmid,
"title": doc.title,
"abstract": doc.abstract,
"mentions": [
{
"concept_id": mention.id,
"type": mention.type,
"text": mention.text,
"offsets": [mention.start, mention.end],
}
for mention in doc.annotations
],
}
yield source_example
@staticmethod
def _pubtator_to_bigbio_kb(filepath: Dict) -> Iterator[Dict]:
with open(filepath, "r") as f:
unified_example = {}
for doc in pubtator.iterparse(f):
unified_example["id"] = doc.pmid
unified_example["document_id"] = doc.pmid
unified_example["passages"] = [
{
"id": doc.pmid + "_title",
"type": "title",
"text": [doc.title],
"offsets": [[0, len(doc.title)]],
},
{
"id": doc.pmid + "_abstract",
"type": "abstract",
"text": [doc.abstract],
"offsets": [
[
# +1 assumes the title and abstract will be joined by a space.
len(doc.title) + 1,
len(doc.title) + 1 + len(doc.abstract),
]
],
},
]
unified_entities = []
for i, entity in enumerate(doc.annotations):
# We need a unique identifier for this entity, so build it from the document id and entity id
unified_entity_id = "_".join([doc.pmid, entity.id, str(i)])
# The user can provide a callable that returns the database name.
db_name = "OMIM" if "OMIM" in entity.id else "MESH"
normalized = []
for x in entity.id.split("|"):
if x.startswith("OMIM") or x.startswith("omim"):
normalized.append(
{"db_name": "OMIM", "db_id": x.strip().split(":")[-1]}
)
else:
normalized.append({"db_name": "MESH", "db_id": x.strip()})
unified_entities.append(
{
"id": unified_entity_id,
"type": entity.type,
"text": [entity.text],
"offsets": [[entity.start, entity.end]],
"normalized": normalized,
}
)
unified_example["entities"] = unified_entities
unified_example["relations"] = []
unified_example["events"] = []
unified_example["coreferences"] = []
yield unified_example
|