File size: 10,452 Bytes
e1512bf 8f9ed86 e1512bf 8f9ed86 e1512bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the n2c2 2018 cohort selection dataset.
The dataset consists of three archive files,
├── train.zip - 202 records
└── n2c2-t1_gold_standard_test_data.zip - 86 records
The individual data files (inside the zip and tar archives) come in
xml files that contains text as well as labels.
The files comprising this dataset must be on the users local machine
in a single directory that is passed to `datasets.load_dataset` via
the `data_dir` kwarg. This loader script will read the archive files
directly (i.e. the user should not uncompress, untar or unzip any of
the files).
Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
"""
import os
import zipfile
from collections import defaultdict
from typing import List
import datasets
from lxml import etree
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@article{DBLP:journals/jamia/StubbsFSHU19,
author = {
Amber Stubbs and
Michele Filannino and
Ergin Soysal and
Samuel Henry and
Ozlem Uzuner
},
title = {Cohort selection for clinical trials: n2c2 2018 shared task track 1},
journal = {J. Am. Medical Informatics Assoc.},
volume = {26},
number = {11},
pages = {1163--1171},
year = {2019},
url = {https://doi.org/10.1093/jamia/ocz163},
doi = {10.1093/jamia/ocz163},
timestamp = {Mon, 15 Jun 2020 16:56:11 +0200},
biburl = {https://dblp.org/rec/journals/jamia/StubbsFSHU19.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DATASETNAME = "n2c2_2018_track1"
_DISPLAYNAME = "n2c2 2018 Selection Criteria"
_DESCRIPTION = """\
Track 1 of the 2018 National NLP Clinical Challenges shared tasks focused
on identifying which patients in a corpus of longitudinal medical records
meet and do not meet identified selection criteria.
This shared task aimed to determine whether NLP systems could be trained to identify if patients met or did not meet
a set of selection criteria taken from real clinical trials. The selected criteria required measurement detection (
“Any HbA1c value between 6.5 and 9.5%”), inference (“Use of aspirin to prevent myocardial infarction”),
temporal reasoning (“Diagnosis of ketoacidosis in the past year”), and expert judgment to assess (“Major
diabetes-related complication”). For the corpus, we used the dataset of American English, longitudinal clinical
narratives from the 2014 i2b2/UTHealth shared task 4.
The final selected 13 selection criteria are as follows:
1. DRUG-ABUSE: Drug abuse, current or past
2. ALCOHOL-ABUSE: Current alcohol use over weekly recommended limits
3. ENGLISH: Patient must speak English
4. MAKES-DECISIONS: Patient must make their own medical decisions
5. ABDOMINAL: History of intra-abdominal surgery, small or large intestine
resection, or small bowel obstruction.
6. MAJOR-DIABETES: Major diabetes-related complication. For the purposes of
this annotation, we define “major complication” (as opposed to “minor complication”)
as any of the following that are a result of (or strongly correlated with) uncontrolled diabetes:
a. Amputation
b. Kidney damage
c. Skin conditions
d. Retinopathy
e. nephropathy
f. neuropathy
7. ADVANCED-CAD: Advanced cardiovascular disease (CAD).
For the purposes of this annotation, we define “advanced” as having 2 or more of the following:
a. Taking 2 or more medications to treat CAD
b. History of myocardial infarction (MI)
c. Currently experiencing angina
d. Ischemia, past or present
8. MI-6MOS: MI in the past 6 months
9. KETO-1YR: Diagnosis of ketoacidosis in the past year
10. DIETSUPP-2MOS: Taken a dietary supplement (excluding vitamin D) in the past 2 months
11. ASP-FOR-MI: Use of aspirin to prevent MI
12. HBA1C: Any hemoglobin A1c (HbA1c) value between 6.5% and 9.5%
13. CREATININE: Serum creatinine > upper limit of normal
The training consists of 202 patient records with document-level annotations, 10 records
with textual spans indicating annotator’s evidence for their annotations while test set contains 86.
Note:
* The inter-annotator average agreement is 84.9%
* Whereabouts of 10 records with textual spans indicating annotator’s evidence are unknown.
However, author did a simple script based validation to check if any of the tags contained any text
in any of the training set and they do not, which confirms that atleast train and test do not
have any evidence tagged alongside corresponding tags.
"""
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
_LICENSE = 'Data User Agreement'
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
# Constants
SOURCE = "source"
BIGBIO_TEXT = "bigbio_text"
def _read_zip(file_path):
samples = defaultdict(dict)
with zipfile.ZipFile(file_path) as zf:
for info in zf.infolist():
base, filename = os.path.split(info.filename)
_, ext = os.path.splitext(filename)
ext = ext[1:] # get rid of dot
sample_id = filename.split(".")[0]
if ext == "xml" and not filename.startswith("."):
content = zf.read(info).decode("utf-8").encode()
root = etree.XML(content)
text, tags = root.getchildren()
samples[sample_id]["txt"] = text.text
samples[sample_id]["tags"] = {}
for child in tags:
samples[sample_id]["tags"][child.tag] = child.get("met")
return samples
class N2C22018CohortSelectionDataset(datasets.GeneratorBasedBuilder):
"""i2b2 2018 track 1 cohort selection task"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
_SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE
_BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_TEXT
BUILDER_CONFIGS = [
BigBioConfig(
name=_SOURCE_CONFIG_NAME,
version=SOURCE_VERSION,
description=_DATASETNAME + " source schema",
schema=SOURCE,
subset_id=_DATASETNAME,
),
BigBioConfig(
name=_BIGBIO_CONFIG_NAME,
version=BIGBIO_VERSION,
description=_DATASETNAME + " BigBio schema",
schema=BIGBIO_TEXT,
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = _SOURCE_CONFIG_NAME
LABEL_CLASS_NAMES = [
"ABDOMINAL",
"ADVANCED-CAD",
"ALCOHOL-ABUSE",
"ASP-FOR-MI",
"CREATININE",
"DIETSUPP-2MOS",
"DRUG-ABUSE",
"ENGLISH",
"HBA1C",
"KETO-1YR",
"MAJOR-DIABETES",
"MAKES-DECISIONS",
"MI-6MOS",
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == SOURCE:
labels = {
key: datasets.ClassLabel(names=["met", "not met"])
for key in self.LABEL_CLASS_NAMES
}
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"tags": labels,
}
)
elif self.config.schema == BIGBIO_TEXT:
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
if self.config.data_dir is None or self.config.name is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir and name kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"file_path": os.path.join(data_dir, "train.zip"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"file_path": os.path.join(
data_dir, "n2c2-t1_gold_standard_test_data.zip"
),
},
),
]
@staticmethod
def _get_source_sample(sample_id, sample):
return {
"id": sample_id,
"document_id": sample_id,
"text": sample.get("txt", ""),
"tags": sample.get("tags", {}),
}
@staticmethod
def _get_bigbio_sample(sample_id, sample) -> dict:
tags = sample.get("tags", None)
if tags:
labels = [name for name, met_status in tags.items() if met_status == "met"]
else:
labels = []
return {
"id": sample_id,
"document_id": sample_id,
"text": sample.get("txt", ""),
"labels": labels,
}
def _generate_examples(self, file_path):
samples = _read_zip(file_path)
_id = 0
for sample_id, sample in samples.items():
if self.config.name == self._SOURCE_CONFIG_NAME:
yield _id, self._get_source_sample(sample_id, sample)
elif self.config.name == self._BIGBIO_CONFIG_NAME:
yield _id, self._get_bigbio_sample(sample_id, sample)
_id += 1
|