Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 19,286 Bytes
9c8b546
2226765
 
9c8b546
 
2226765
21a1584
9c8b546
 
 
21a1584
 
9c8b546
 
2226765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c8b546
 
bff19ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a1584
9c8b546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bff19ac
9c8b546
 
bff19ac
 
9c8b546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
from collections import defaultdict
from dataclasses import dataclass
from enum import Enum
import logging
from pathlib import Path
from types import SimpleNamespace
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple

import datasets

if TYPE_CHECKING:
    import bioc

logger = logging.getLogger(__name__)


BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")


@dataclass
class BigBioConfig(datasets.BuilderConfig):
    """BuilderConfig for BigBio."""

    name: str = None
    version: datasets.Version = None
    description: str = None
    schema: str = None
    subset_id: str = None


class Tasks(Enum):
    NAMED_ENTITY_RECOGNITION = "NER"
    NAMED_ENTITY_DISAMBIGUATION = "NED"
    EVENT_EXTRACTION = "EE"
    RELATION_EXTRACTION = "RE"
    COREFERENCE_RESOLUTION = "COREF"
    QUESTION_ANSWERING = "QA"
    TEXTUAL_ENTAILMENT = "TE"
    SEMANTIC_SIMILARITY = "STS"
    TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
    PARAPHRASING = "PARA"
    TRANSLATION = "TRANSL"
    SUMMARIZATION = "SUM"
    TEXT_CLASSIFICATION = "TXTCLASS"


entailment_features = datasets.Features(
    {
        "id": datasets.Value("string"),
        "premise": datasets.Value("string"),
        "hypothesis": datasets.Value("string"),
        "label": datasets.Value("string"),
    }
)

pairs_features = datasets.Features(
    {
        "id": datasets.Value("string"),
        "document_id": datasets.Value("string"),
        "text_1": datasets.Value("string"),
        "text_2": datasets.Value("string"),
        "label": datasets.Value("string"),
    }
)

qa_features = datasets.Features(
    {
        "id": datasets.Value("string"),
        "question_id": datasets.Value("string"),
        "document_id": datasets.Value("string"),
        "question": datasets.Value("string"),
        "type": datasets.Value("string"),
        "choices": [datasets.Value("string")],
        "context": datasets.Value("string"),
        "answer": datasets.Sequence(datasets.Value("string")),
    }
)

text_features = datasets.Features(
    {
        "id": datasets.Value("string"),
        "document_id": datasets.Value("string"),
        "text": datasets.Value("string"),
        "labels": [datasets.Value("string")],
    }
)

text2text_features = datasets.Features(
    {
        "id": datasets.Value("string"),
        "document_id": datasets.Value("string"),
        "text_1": datasets.Value("string"),
        "text_2": datasets.Value("string"),
        "text_1_name": datasets.Value("string"),
        "text_2_name": datasets.Value("string"),
    }
)

kb_features = datasets.Features(
    {
        "id": datasets.Value("string"),
        "document_id": datasets.Value("string"),
        "passages": [
            {
                "id": datasets.Value("string"),
                "type": datasets.Value("string"),
                "text": datasets.Sequence(datasets.Value("string")),
                "offsets": datasets.Sequence([datasets.Value("int32")]),
            }
        ],
        "entities": [
            {
                "id": datasets.Value("string"),
                "type": datasets.Value("string"),
                "text": datasets.Sequence(datasets.Value("string")),
                "offsets": datasets.Sequence([datasets.Value("int32")]),
                "normalized": [
                    {
                        "db_name": datasets.Value("string"),
                        "db_id": datasets.Value("string"),
                    }
                ],
            }
        ],
        "events": [
            {
                "id": datasets.Value("string"),
                "type": datasets.Value("string"),
                # refers to the text_bound_annotation of the trigger
                "trigger": {
                    "text": datasets.Sequence(datasets.Value("string")),
                    "offsets": datasets.Sequence([datasets.Value("int32")]),
                },
                "arguments": [
                    {
                        "role": datasets.Value("string"),
                        "ref_id": datasets.Value("string"),
                    }
                ],
            }
        ],
        "coreferences": [
            {
                "id": datasets.Value("string"),
                "entity_ids": datasets.Sequence(datasets.Value("string")),
            }
        ],
        "relations": [
            {
                "id": datasets.Value("string"),
                "type": datasets.Value("string"),
                "arg1_id": datasets.Value("string"),
                "arg2_id": datasets.Value("string"),
                "normalized": [
                    {
                        "db_name": datasets.Value("string"),
                        "db_id": datasets.Value("string"),
                    }
                ],
            }
        ],
    }
)


TASK_TO_SCHEMA = {
    Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
    Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
    Tasks.EVENT_EXTRACTION.name: "KB",
    Tasks.RELATION_EXTRACTION.name: "KB",
    Tasks.COREFERENCE_RESOLUTION.name: "KB",
    Tasks.QUESTION_ANSWERING.name: "QA",
    Tasks.TEXTUAL_ENTAILMENT.name: "TE",
    Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
    Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
    Tasks.PARAPHRASING.name: "T2T",
    Tasks.TRANSLATION.name: "T2T",
    Tasks.SUMMARIZATION.name: "T2T",
    Tasks.TEXT_CLASSIFICATION.name: "TEXT",
}

SCHEMA_TO_TASKS = defaultdict(set)
for task, schema in TASK_TO_SCHEMA.items():
    SCHEMA_TO_TASKS[schema].add(task)
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)

VALID_TASKS = set(TASK_TO_SCHEMA.keys())
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())

SCHEMA_TO_FEATURES = {
    "KB": kb_features,
    "QA": qa_features,
    "TE": entailment_features,
    "T2T": text2text_features,
    "TEXT": text_features,
    "PAIRS": pairs_features,
}


def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:

    offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]

    text = ann.text

    if len(offsets) > 1:
        i = 0
        texts = []
        for start, end in offsets:
            chunk_len = end - start
            texts.append(text[i : chunk_len + i])
            i += chunk_len
            while i < len(text) and text[i] == " ":
                i += 1
    else:
        texts = [text]

    return offsets, texts


def remove_prefix(a: str, prefix: str) -> str:
    if a.startswith(prefix):
        a = a[len(prefix) :]
    return a


def parse_brat_file(
    txt_file: Path,
    annotation_file_suffixes: List[str] = None,
    parse_notes: bool = False,
) -> Dict:
    """
    Parse a brat file into the schema defined below.
    `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
    Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
    e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
    Will include annotator notes, when `parse_notes == True`.
    brat_features = datasets.Features(
        {
            "id": datasets.Value("string"),
            "document_id": datasets.Value("string"),
            "text": datasets.Value("string"),
            "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
                {
                    "offsets": datasets.Sequence([datasets.Value("int32")]),
                    "text": datasets.Sequence(datasets.Value("string")),
                    "type": datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            ],
            "events": [  # E line in brat
                {
                    "trigger": datasets.Value(
                        "string"
                    ),  # refers to the text_bound_annotation of the trigger,
                    "id": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "arguments": datasets.Sequence(
                        {
                            "role": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                        }
                    ),
                }
            ],
            "relations": [  # R line in brat
                {
                    "id": datasets.Value("string"),
                    "head": {
                        "ref_id": datasets.Value("string"),
                        "role": datasets.Value("string"),
                    },
                    "tail": {
                        "ref_id": datasets.Value("string"),
                        "role": datasets.Value("string"),
                    },
                    "type": datasets.Value("string"),
                }
            ],
            "equivalences": [  # Equiv line in brat
                {
                    "id": datasets.Value("string"),
                    "ref_ids": datasets.Sequence(datasets.Value("string")),
                }
            ],
            "attributes": [  # M or A lines in brat
                {
                    "id": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "ref_id": datasets.Value("string"),
                    "value": datasets.Value("string"),
                }
            ],
            "normalizations": [  # N lines in brat
                {
                    "id": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "ref_id": datasets.Value("string"),
                    "resource_name": datasets.Value(
                        "string"
                    ),  # Name of the resource, e.g. "Wikipedia"
                    "cuid": datasets.Value(
                        "string"
                    ),  # ID in the resource, e.g. 534366
                    "text": datasets.Value(
                        "string"
                    ),  # Human readable description/name of the entity, e.g. "Barack Obama"
                }
            ],
            ### OPTIONAL: Only included when `parse_notes == True`
            "notes": [  # # lines in brat
                {
                    "id": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "ref_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                }
            ],
        },
        )
    """

    example = {}
    example["document_id"] = txt_file.with_suffix("").name
    with txt_file.open() as f:
        example["text"] = f.read()

    # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
    # for event extraction
    if annotation_file_suffixes is None:
        annotation_file_suffixes = [".a1", ".a2", ".ann"]

    if len(annotation_file_suffixes) == 0:
        raise AssertionError(
            "At least one suffix for the to-be-read annotation files should be given!"
        )

    ann_lines = []
    for suffix in annotation_file_suffixes:
        annotation_file = txt_file.with_suffix(suffix)
        try:
            with annotation_file.open() as f:
                ann_lines.extend(f.readlines())
        except Exception:
            continue

    example["text_bound_annotations"] = []
    example["events"] = []
    example["relations"] = []
    example["equivalences"] = []
    example["attributes"] = []
    example["normalizations"] = []

    if parse_notes:
        example["notes"] = []

    for line in ann_lines:
        line = line.strip()
        if not line:
            continue

        if line.startswith("T"):  # Text bound
            ann = {}
            fields = line.split("\t")

            ann["id"] = fields[0]
            ann["type"] = fields[1].split()[0]
            ann["offsets"] = []
            span_str = remove_prefix(fields[1], (ann["type"] + " "))
            text = fields[2]
            for span in span_str.split(";"):
                start, end = span.split()
                ann["offsets"].append([int(start), int(end)])

            # Heuristically split text of discontiguous entities into chunks
            ann["text"] = []
            if len(ann["offsets"]) > 1:
                i = 0
                for start, end in ann["offsets"]:
                    chunk_len = end - start
                    ann["text"].append(text[i : chunk_len + i])
                    i += chunk_len
                    while i < len(text) and text[i] == " ":
                        i += 1
            else:
                ann["text"] = [text]

            example["text_bound_annotations"].append(ann)

        elif line.startswith("E"):
            ann = {}
            fields = line.split("\t")

            ann["id"] = fields[0]

            ann["type"], ann["trigger"] = fields[1].split()[0].split(":")

            ann["arguments"] = []
            for role_ref_id in fields[1].split()[1:]:
                argument = {
                    "role": (role_ref_id.split(":"))[0],
                    "ref_id": (role_ref_id.split(":"))[1],
                }
                ann["arguments"].append(argument)

            example["events"].append(ann)

        elif line.startswith("R"):
            ann = {}
            fields = line.split("\t")

            ann["id"] = fields[0]
            ann["type"] = fields[1].split()[0]

            ann["head"] = {
                "role": fields[1].split()[1].split(":")[0],
                "ref_id": fields[1].split()[1].split(":")[1],
            }
            ann["tail"] = {
                "role": fields[1].split()[2].split(":")[0],
                "ref_id": fields[1].split()[2].split(":")[1],
            }

            example["relations"].append(ann)

        # '*' seems to be the legacy way to mark equivalences,
        # but I couldn't find any info on the current way
        # this might have to be adapted dependent on the brat version
        # of the annotation
        elif line.startswith("*"):
            ann = {}
            fields = line.split("\t")

            ann["id"] = fields[0]
            ann["ref_ids"] = fields[1].split()[1:]

            example["equivalences"].append(ann)

        elif line.startswith("A") or line.startswith("M"):
            ann = {}
            fields = line.split("\t")

            ann["id"] = fields[0]

            info = fields[1].split()
            ann["type"] = info[0]
            ann["ref_id"] = info[1]

            if len(info) > 2:
                ann["value"] = info[2]
            else:
                ann["value"] = ""

            example["attributes"].append(ann)

        elif line.startswith("N"):
            ann = {}
            fields = line.split("\t")

            ann["id"] = fields[0]
            ann["text"] = fields[2]

            info = fields[1].split()

            ann["type"] = info[0]
            ann["ref_id"] = info[1]
            ann["resource_name"] = info[2].split(":")[0]
            ann["cuid"] = info[2].split(":")[1]
            example["normalizations"].append(ann)

        elif parse_notes and line.startswith("#"):
            ann = {}
            fields = line.split("\t")

            ann["id"] = fields[0]
            ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL

            info = fields[1].split()

            ann["type"] = info[0]
            ann["ref_id"] = info[1]
            example["notes"].append(ann)

    return example


def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
    """
    Transform a brat parse (conforming to the standard brat schema) obtained with
    `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
    :param brat_parse:
    """

    unified_example = {}

    # Prefix all ids with document id to ensure global uniqueness,
    # because brat ids are only unique within their document
    id_prefix = brat_parse["document_id"] + "_"

    # identical
    unified_example["document_id"] = brat_parse["document_id"]
    unified_example["passages"] = [
        {
            "id": id_prefix + "_text",
            "type": "abstract",
            "text": [brat_parse["text"]],
            "offsets": [[0, len(brat_parse["text"])]],
        }
    ]

    # get normalizations
    ref_id_to_normalizations = defaultdict(list)
    for normalization in brat_parse["normalizations"]:
        ref_id_to_normalizations[normalization["ref_id"]].append(
            {
                "db_name": normalization["resource_name"],
                "db_id": normalization["cuid"],
            }
        )

    # separate entities and event triggers
    unified_example["events"] = []
    non_event_ann = brat_parse["text_bound_annotations"].copy()
    for event in brat_parse["events"]:
        event = event.copy()
        event["id"] = id_prefix + event["id"]
        trigger = next(
            tr
            for tr in brat_parse["text_bound_annotations"]
            if tr["id"] == event["trigger"]
        )
        if trigger in non_event_ann:
            non_event_ann.remove(trigger)
        event["trigger"] = {
            "text": trigger["text"].copy(),
            "offsets": trigger["offsets"].copy(),
        }
        for argument in event["arguments"]:
            argument["ref_id"] = id_prefix + argument["ref_id"]

        unified_example["events"].append(event)

    unified_example["entities"] = []
    anno_ids = [ref_id["id"] for ref_id in non_event_ann]
    for ann in non_event_ann:
        entity_ann = ann.copy()
        entity_ann["id"] = id_prefix + entity_ann["id"]
        entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
        unified_example["entities"].append(entity_ann)

    # massage relations
    unified_example["relations"] = []
    skipped_relations = set()
    for ann in brat_parse["relations"]:
        if (
            ann["head"]["ref_id"] not in anno_ids
            or ann["tail"]["ref_id"] not in anno_ids
        ):
            skipped_relations.add(ann["id"])
            continue
        unified_example["relations"].append(
            {
                "arg1_id": id_prefix + ann["head"]["ref_id"],
                "arg2_id": id_prefix + ann["tail"]["ref_id"],
                "id": id_prefix + ann["id"],
                "type": ann["type"],
                "normalized": [],
            }
        )
    if len(skipped_relations) > 0:
        example_id = brat_parse["document_id"]
        logger.info(
            f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
            f" Skip (for now): "
            f"{list(skipped_relations)}"
        )

    # get coreferences
    unified_example["coreferences"] = []
    for i, ann in enumerate(brat_parse["equivalences"], start=1):
        is_entity_cluster = True
        for ref_id in ann["ref_ids"]:
            if not ref_id.startswith("T"):  # not textbound -> no entity
                is_entity_cluster = False
            elif ref_id not in anno_ids:  # event trigger -> no entity
                is_entity_cluster = False
        if is_entity_cluster:
            entity_ids = [id_prefix + i for i in ann["ref_ids"]]
            unified_example["coreferences"].append(
                {"id": id_prefix + str(i), "entity_ids": entity_ids}
            )
    return unified_example