Datasets:

Languages:
English
License:
File size: 7,554 Bytes
21623b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9eaeef
21623b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9eaeef
21623b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import xml.etree.ElementTree as ET
from dataclasses import dataclass
from typing import List

import datasets

from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = True
_CITATION = """\
@article{nentidis-etal-2017-results,
  title        = {Results of the fifth edition of the {B}io{ASQ} Challenge},
  author       = {
    Nentidis, Anastasios  and Bougiatiotis, Konstantinos  and Krithara,
    Anastasia  and Paliouras, Georgios  and Kakadiaris, Ioannis
  },
  year         = 2007,
  journal      = {},
  volume       = {BioNLP 2017},
  doi          = {10.18653/v1/W17-2306},
  url          = {https://aclanthology.org/W17-2306},
  biburl       = {},
  bibsource    = {https://aclanthology.org/W17-2306}
}

"""

_DATASETNAME = "bioasq_task_c_2017"
_DISPLAYNAME = "BioASQ Task C 2017"

_DESCRIPTION = """\
The training data set for this task contains annotated biomedical articles
published in PubMed and corresponding full text from PMC. By annotated is meant
that GrantIDs and corresponding Grant Agencies have been identified in the full
text of articles
"""

_HOMEPAGE = "http://participants-area.bioasq.org/general_information/Task5c/"

_LICENSE = 'National Library of Medicine Terms and Conditions'

# Website contains all data, but login required
_URLS = {_DATASETNAME: "http://participants-area.bioasq.org/datasets/"}

_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


@dataclass
class BioASQTaskC2017BigBioConfig(BigBioConfig):
    schema: str = "source"
    name: str = "bioasq_task_c_2017_source"
    version: datasets.Version = datasets.Version(_SOURCE_VERSION)
    description: str = "bioasq_task_c_2017 source schema"
    subset_id: str = "bioasq_task_c_2017"


class BioASQTaskC2017(datasets.GeneratorBasedBuilder):
    """
    BioASQ Task C Dataset for 2017
    """

    DEFAULT_CONFIG_NAME = "bioasq_task_c_2017_source"
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BioASQTaskC2017BigBioConfig(
            name="bioasq_task_c_2017_source",
            version=SOURCE_VERSION,
            description="bioasq_task_c_2017 source schema",
            schema="source",
            subset_id="bioasq_task_c_2017",
        ),
        BioASQTaskC2017BigBioConfig(
            name="bioasq_task_c_2017_bigbio_text",
            version=BIGBIO_VERSION,
            description="bioasq_task_c_2017 BigBio schema",
            schema="bigbio_text",
            subset_id="bioasq_task_c_2017",
        ),
    ]

    BUILDER_CONFIG_CLASS = BioASQTaskC2017BigBioConfig

    def _info(self) -> datasets.DatasetInfo:

        # BioASQ Task C source schema
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_id": datasets.Value("string"),
                    "pmid": datasets.Value("string"),
                    "pmcid": datasets.Value("string"),
                    "grantList": [
                        {
                            "agency": datasets.Value("string"),
                        }
                    ],
                    "text": datasets.Value("string"),
                }
            )

        # For example bigbio_kb, bigbio_t2t
        elif self.config.schema == "bigbio_text":
            features = text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:

        if self.config.data_dir is None:
            raise ValueError(
                "This is a local dataset. Please pass the data_dir kwarg to load_dataset."
            )
        else:
            data_dir = self.config.data_dir

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "taskCTrainingData2017.json"),
                    "filespath": os.path.join(data_dir, "Train_Text"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "taskc_golden2.json"),
                    "filespath": os.path.join(data_dir, "Final_Text"),
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath, filespath, split):

        with open(filepath) as f:
            task_data = json.load(f)

        if self.config.schema == "source":
            for article in task_data["articles"]:

                with open(filespath + "/" + article["pmcid"] + ".xml") as f:
                    text = f.read()
                pmid = article["pmid"]

                yield pmid, {
                    "text": text,  # articles[pmid],
                    "document_id": pmid,
                    "id": str(pmid),
                    "pmid": pmid,
                    "pmcid": article["pmcid"],
                    "grantList": [
                        {"agency": grant["agency"]} for grant in article["grantList"]
                    ],
                }

        elif self.config.schema == "bigbio_text":

            for article in task_data["articles"]:

                with open(filespath + "/" + article["pmcid"] + ".xml") as f:
                    xml_string = f.read()

                try:
                    article_body = ET.fromstring(xml_string).find("./article/body")
                except ET.ParseError:

                    # PubMed XML might not contain namespace which results in parse error, add manually
                    xml_string = xml_string.replace(
                        "</pmc-articleset>",
                        # xlink namespace
                        '<article xmlns:xlink="http://www.w3.org/1999/xlink"'  # mml namespace
                        ' xmlns:mml="http://www.w3.org/1998/Math/MathML"'
                        ' article-type="research-article">',
                    )
                    xml_string = xml_string + "</article></pmc-articleset>"
                    article_body = ET.fromstring(xml_string).find("./article/body")

                text = ET.tostring(article_body, encoding="utf8", method="text")

                yield article["pmid"], {
                    "text": text,
                    "id": str(article["pmid"]),
                    "document_id": article["pmid"],
                    "labels": [grant["agency"] for grant in article["grantList"]],
                }