File size: 7,554 Bytes
21623b9 d9eaeef 21623b9 d9eaeef 21623b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import xml.etree.ElementTree as ET
from dataclasses import dataclass
from typing import List
import datasets
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = True
_CITATION = """\
@article{nentidis-etal-2017-results,
title = {Results of the fifth edition of the {B}io{ASQ} Challenge},
author = {
Nentidis, Anastasios and Bougiatiotis, Konstantinos and Krithara,
Anastasia and Paliouras, Georgios and Kakadiaris, Ioannis
},
year = 2007,
journal = {},
volume = {BioNLP 2017},
doi = {10.18653/v1/W17-2306},
url = {https://aclanthology.org/W17-2306},
biburl = {},
bibsource = {https://aclanthology.org/W17-2306}
}
"""
_DATASETNAME = "bioasq_task_c_2017"
_DISPLAYNAME = "BioASQ Task C 2017"
_DESCRIPTION = """\
The training data set for this task contains annotated biomedical articles
published in PubMed and corresponding full text from PMC. By annotated is meant
that GrantIDs and corresponding Grant Agencies have been identified in the full
text of articles
"""
_HOMEPAGE = "http://participants-area.bioasq.org/general_information/Task5c/"
_LICENSE = 'National Library of Medicine Terms and Conditions'
# Website contains all data, but login required
_URLS = {_DATASETNAME: "http://participants-area.bioasq.org/datasets/"}
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
@dataclass
class BioASQTaskC2017BigBioConfig(BigBioConfig):
schema: str = "source"
name: str = "bioasq_task_c_2017_source"
version: datasets.Version = datasets.Version(_SOURCE_VERSION)
description: str = "bioasq_task_c_2017 source schema"
subset_id: str = "bioasq_task_c_2017"
class BioASQTaskC2017(datasets.GeneratorBasedBuilder):
"""
BioASQ Task C Dataset for 2017
"""
DEFAULT_CONFIG_NAME = "bioasq_task_c_2017_source"
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BioASQTaskC2017BigBioConfig(
name="bioasq_task_c_2017_source",
version=SOURCE_VERSION,
description="bioasq_task_c_2017 source schema",
schema="source",
subset_id="bioasq_task_c_2017",
),
BioASQTaskC2017BigBioConfig(
name="bioasq_task_c_2017_bigbio_text",
version=BIGBIO_VERSION,
description="bioasq_task_c_2017 BigBio schema",
schema="bigbio_text",
subset_id="bioasq_task_c_2017",
),
]
BUILDER_CONFIG_CLASS = BioASQTaskC2017BigBioConfig
def _info(self) -> datasets.DatasetInfo:
# BioASQ Task C source schema
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"pmid": datasets.Value("string"),
"pmcid": datasets.Value("string"),
"grantList": [
{
"agency": datasets.Value("string"),
}
],
"text": datasets.Value("string"),
}
)
# For example bigbio_kb, bigbio_t2t
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "taskCTrainingData2017.json"),
"filespath": os.path.join(data_dir, "Train_Text"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "taskc_golden2.json"),
"filespath": os.path.join(data_dir, "Final_Text"),
"split": "test",
},
),
]
def _generate_examples(self, filepath, filespath, split):
with open(filepath) as f:
task_data = json.load(f)
if self.config.schema == "source":
for article in task_data["articles"]:
with open(filespath + "/" + article["pmcid"] + ".xml") as f:
text = f.read()
pmid = article["pmid"]
yield pmid, {
"text": text, # articles[pmid],
"document_id": pmid,
"id": str(pmid),
"pmid": pmid,
"pmcid": article["pmcid"],
"grantList": [
{"agency": grant["agency"]} for grant in article["grantList"]
],
}
elif self.config.schema == "bigbio_text":
for article in task_data["articles"]:
with open(filespath + "/" + article["pmcid"] + ".xml") as f:
xml_string = f.read()
try:
article_body = ET.fromstring(xml_string).find("./article/body")
except ET.ParseError:
# PubMed XML might not contain namespace which results in parse error, add manually
xml_string = xml_string.replace(
"</pmc-articleset>",
# xlink namespace
'<article xmlns:xlink="http://www.w3.org/1999/xlink"' # mml namespace
' xmlns:mml="http://www.w3.org/1998/Math/MathML"'
' article-type="research-article">',
)
xml_string = xml_string + "</article></pmc-articleset>"
article_body = ET.fromstring(xml_string).find("./article/body")
text = ET.tostring(article_body, encoding="utf8", method="text")
yield article["pmid"], {
"text": text,
"id": str(article["pmid"]),
"document_id": article["pmid"],
"labels": [grant["agency"] for grant in article["grantList"]],
}
|