Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,896 Bytes
a9cc57b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64ba3e
a9cc57b
 
 
 
a64ba3e
a9cc57b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64ba3e
a9cc57b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64ba3e
 
 
 
 
 
 
 
 
 
 
 
 
a9cc57b
 
 
 
a64ba3e
a9cc57b
 
a64ba3e
a9cc57b
 
 
 
 
 
 
a64ba3e
 
 
a9cc57b
 
a64ba3e
a9cc57b
 
 
 
 
 
 
a64ba3e
a9cc57b
 
 
a64ba3e
a9cc57b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import datasets

from .bigbiohub import BigBioConfig, Tasks, kb_features

_DATASETNAME = "ask_a_patient"
_DISPLAYNAME = "AskAPatient"

_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """
@inproceedings{limsopatham-collier-2016-normalising,
    title = "Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation",
    author = "Limsopatham, Nut  and
      Collier, Nigel",
    booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = aug,
    year = "2016",
    address = "Berlin, Germany",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P16-1096",
    doi = "10.18653/v1/P16-1096",
    pages = "1014--1023",
}
"""

_DESCRIPTION = """
The AskAPatient dataset contains medical concepts written on social media \
mapped to how they are formally written in medical ontologies (SNOMED-CT and AMT).
"""

_HOMEPAGE = "https://zenodo.org/record/55013"

_LICENSE = "Creative Commons Attribution 4.0 International"

_URLs = "https://zenodo.org/record/55013/files/datasets.zip"

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class AskAPatient(datasets.GeneratorBasedBuilder):
    """AskAPatient: Dataset for Normalising Medical Concepts in Social Media Text."""

    DEFAULT_CONFIG_NAME = "ask_a_patient_source"
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="ask_a_patient_source",
            version=SOURCE_VERSION,
            description="AskAPatient source schema",
            schema="source",
            subset_id="ask_a_patient",
        ),
        BigBioConfig(
            name="ask_a_patient_bigbio_kb",
            version=BIGBIO_VERSION,
            description="AskAPatient simplified BigBio schema",
            schema="bigbio_kb",
            subset_id="ask_a_patient",
        ),
    ]

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "cui": datasets.Value("string"),
                    "medical_concept": datasets.Value("string"),
                    "social_media_text": datasets.Value("string"),
                }
            )
        elif self.config.schema == "bigbio_kb":
            features = kb_features
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(_URLs)
        dataset_dir = os.path.join(dl_dir, "datasets", "AskAPatient")
        # dataset supports k-folds
        splits_names = ["train", "validation", "test"]
        fold_ids = range(10)
        return [
            datasets.SplitGenerator(
                name=f"{split_name}_{fold_id}",
                gen_kwargs={
                    "filepath": os.path.join(dataset_dir, f"AskAPatient.fold-{fold_id}.{split_name}.txt"),
                    "split_id": f"{split_name}_{fold_id}",
                },
            )
            for split_name in splits_names
            for fold_id in fold_ids
        ]

    def _generate_examples(self, filepath, split_id):
        with open(filepath, "r", encoding="latin-1") as f:
            for i, line in enumerate(f):
                uid = f"{split_id}_{i}"
                cui, medical_concept, social_media_text = line.strip().split("\t")
                if self.config.schema == "source":
                    yield uid, {
                        "cui": cui,
                        "medical_concept": medical_concept,
                        "social_media_text": social_media_text,
                    }
                elif self.config.schema == "bigbio_kb":
                    text_type = "social_media_text"
                    offset = (0, len(social_media_text))
                    yield uid, {
                        "id": uid,
                        "document_id": uid,
                        "passages": [
                            {
                                "id": f"{uid}_passage",
                                "type": text_type,
                                "text": [social_media_text],
                                "offsets": [offset],
                            }
                        ],
                        "entities": [
                            {
                                "id": f"{uid}_entity",
                                "type": text_type,
                                "text": [social_media_text],
                                "offsets": [offset],
                                "normalized": [{"db_name": "SNOMED-CT|AMT", "db_id": cui}],
                            }
                        ],
                        "events": [],
                        "coreferences": [],
                        "relations": [],
                    }