Datasets:
File size: 2,226 Bytes
4b3cb3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
"""
This is the script used to create the dataset from the downloaded/extracted dataset @ https://www.vision.caltech.edu/datasets/cub_200_2011/
"""
import datasets
from pathlib import Path
import shutil
import json
index_to_path = (
Path("CUB_200_2011/CUB_200_2011/images.txt")
.read_text()
.strip()
.split("\n")
)
index_to_path = [Path("CUB_200_2011/CUB_200_2011/images") / Path(x.split(" ")[-1]) for x in index_to_path]
index_to_split = (
Path("CUB_200_2011/CUB_200_2011/train_test_split.txt")
.read_text()
.strip()
.split("\n")
)
index_to_split = ["train" if x.split(" ")[-1] == "1" else "test" for x in index_to_split]
index_to_bbox = (
Path("CUB_200_2011/CUB_200_2011/bounding_boxes.txt")
.read_text()
.strip()
.split("\n")
)
def convert_bbox(bbox):
# From: x0, y0, width, height
# To: x0, y0, x1, y1
new_bbox = [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]
return new_bbox
index_to_bbox = [[float(i) for i in x.split(" ")[1:]] for x in index_to_bbox]
index_to_bbox = [convert_bbox(bbox) for bbox in index_to_bbox]
data_dir = Path("data")
train_dir = Path("data") / Path("train")
test_dir = Path("data") / Path("test")
train_dir.mkdir(parents=True, exist_ok=True)
test_dir.mkdir(parents=True, exist_ok=True)
metadata = []
for path, split, bbox in zip(index_to_path, index_to_split, index_to_bbox):
class_dir, file_name = path.parts[-2:]
dir = train_dir / class_dir if split == "train" else test_dir / class_dir
dir.mkdir(parents=True, exist_ok=True)
class_file_path = Path("/".join([class_dir, file_name]))
destination_path = train_dir / class_file_path if split == "train" else test_dir / class_file_path
metadata_file_name = Path("/".join(destination_path.parts[1:]))
x_min, y_min, x_max, y_max = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]
metadata.append({"file_name": str(metadata_file_name), "bbox": bbox})
shutil.copy(path, destination_path)
with open("data/metadata.jsonl", "w") as f:
for md in metadata:
f.write(f"{json.dumps(md)}\n")
dataset = datasets.load_dataset("imagefolder", data_dir="data", drop_labels=False)
dataset.push_to_hub("bentrevett/cub-200-2011") |