|
--- |
|
dataset_info: |
|
features: |
|
- name: video_id |
|
dtype: int64 |
|
- name: recall_score |
|
dtype: float64 |
|
- name: youtube_id |
|
dtype: string |
|
- name: ad_details |
|
struct: |
|
- name: Audio |
|
dtype: string |
|
- name: Brand |
|
dtype: string |
|
- name: Duration |
|
dtype: string |
|
- name: Orientation |
|
dtype: string |
|
- name: Pace |
|
dtype: string |
|
- name: Scenes |
|
list: |
|
- name: Colors |
|
dtype: string |
|
- name: Description |
|
dtype: string |
|
- name: Emotions |
|
dtype: string |
|
- name: Number |
|
dtype: string |
|
- name: Photography Style |
|
dtype: string |
|
- name: Tags |
|
dtype: string |
|
- name: Text Shown |
|
dtype: string |
|
- name: Tone |
|
dtype: string |
|
- name: Visual Complexity |
|
dtype: string |
|
- name: Title |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5490622.457169034 |
|
num_examples: 1964 |
|
- name: test |
|
num_bytes: 612243.5428309665 |
|
num_examples: 219 |
|
download_size: 2551503 |
|
dataset_size: 6102866 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
license: mit |
|
pretty_name: Long Term Memorability of Advertisements (LAMBDA) |
|
task_categories: |
|
- text-classification |
|
- text-generation |
|
- question-answering |
|
tags: |
|
- memorability |
|
- long-term-memorability |
|
- advertisement memorability |
|
--- |
|
|
|
|
|
## Dataset Description |
|
|
|
- **Website:** https://behavior-in-the-wild.github.io/memorability |
|
- **Paper:** https://arxiv.org/abs/2309.00378 |
|
|
|
### Dataset Summary |
|
LAMDBA is a long term ad memorability dataset, featuring data from 1749 participants and 2205 ads across 276 brands. |
|
|
|
## Dataset Structure |
|
|
|
```python |
|
from datasets import load_dataset |
|
ds = load_dataset("behavior-in-the-wild/LAMBDA") |
|
ds |
|
|
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['video_id', 'recall_score', 'youtube_id', 'ad_details'], |
|
num_rows: 1964 |
|
}) |
|
test: Dataset({ |
|
features: ['video_id', 'recall_score', 'youtube_id', 'ad_details'], |
|
num_rows: 219 |
|
}) |
|
}) |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `video_id`: identifier for the data sample |
|
- `recall_score`: memorability score for the video between 0 to 1 |
|
- `youtube_id`: youtube id for the video |
|
- `ad_details`: scene by scene features for each video |
|
|
|
## Citation |
|
@misc{s2024longtermadmemorabilityunderstanding, |
|
title={Long-Term Ad Memorability: Understanding and Generating Memorable Ads}, |
|
author={Harini S I au2 and Somesh Singh and Yaman K Singla and Aanisha Bhattacharyya and Veeky Baths and Changyou Chen and Rajiv Ratn Shah and Balaji Krishnamurthy}, |
|
year={2024}, |
|
eprint={2309.00378}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2309.00378}} |