File size: 5,466 Bytes
8990d23 0b013ca 8990d23 0b013ca 8990d23 0b013ca 8990d23 0b013ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RVL-CDIP-N_mp (Ryerson Vision Lab Complex Document Information Processing) -New -Multipage dataset"""
import os
import datasets
from pathlib import Path
from tqdm import tqdm
import pdf2image
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
_MODE = "binary"
_CITATION = """\
@inproceedings{larson2022evaluating,
title={Evaluating Out-of-Distribution Performance on Document Image Classifiers},
author={Larson, Stefan and Lim, Gordon and Ai, Yutong and Kuang, David and Leach, Kevin},
booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
year={2022}
}
@inproceedings{bdpc,
title = {Beyond Document Page Classification},
author = {Anonymous},
booktitle = {Under Review},
year = {2023}
}
"""
_DESCRIPTION = """\
The RVL-CDIP-N (Ryerson Vision Lab Complex Document Information Processing) dataset consists of newly gathered documents in 16 classes
There are 991 documents for testing purposes. There were 10 documents from the original dataset that could not be retrieved based on the metadata or were out-of-scope (language).
"""
_HOMEPAGE = "https://www.cs.cmu.edu/~aharley/rvl-cdip/"
_LICENSE = "https://www.industrydocuments.ucsf.edu/help/copyright/"
SOURCE = "bdpc/rvl_cdip_n_mp"
_URL = f"https://huggingface.co/datasets/{SOURCE}/resolve/main/data.tar.gz"
_BACKOFF_folder = "/mnt/lerna/data/RVL-CDIP-NO/RVL-CDIP-N_pdf/data"
_CLASSES = [
"letter",
"form",
"email",
"handwritten",
"advertisement",
"scientific report",
"scientific publication",
"specification",
"file folder",
"news article",
"budget",
"invoice",
"presentation",
"questionnaire",
"resume",
"memo",
]
def batched_conversion(pdf_file):
info = pdf2image.pdfinfo_from_path(pdf_file, userpw=None, poppler_path=None)
maxPages = info["Pages"]
logger.info(f"{pdf_file} has {str(maxPages)} pages")
images = []
for page in range(1, maxPages + 1, 10):
images.extend(
pdf2image.convert_from_path(pdf_file, dpi=200, first_page=page, last_page=min(page + 10 - 1, maxPages))
)
return images
def open_pdf_binary(pdf_file):
with open(pdf_file, "rb") as f:
return f.read()
class RvlCdipNMp(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
DEFAULT_CONFIG_NAME = "default"
def _info(self):
if isinstance(self.config.data_dir, str):
folder = self.config.data_dir # contains the folder structure at someone local disk
else:
folder = _URL if not os.path.exists(_BACKOFF_folder) else _BACKOFF_folder
self.config.data_dir = folder
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"file": datasets.Value("binary"),
"labels": datasets.features.ClassLabel(names=_CLASSES),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
task_templates=None,
)
def _split_generators(self, dl_manager):
if self.config.data_dir.endswith(".tar.gz"):
archive_path = dl_manager.download(self.config.data_dir)
data_files = dl_manager.iter_archive(archive_path)
else:
data_files = self.config.data_dir
return [datasets.SplitGenerator(name="test", gen_kwargs={"archive_path": data_files})]
def generate_example(self, path, file=None):
labels = self.info.features["labels"]
extensions = {".pdf", ".PDF"}
path = Path(path) # ensure path is a pathlib object
if path.suffix in extensions:
if file is None:
if _MODE == "binary":
file = open_pdf_binary(path)
# batched_conversion(path)
else:
file = path
a = dict(
id=path.name,
file=file,
labels=labels.encode_example(path.parent.name.lower()),
)
return path.name, a
def _generate_examples(self, archive_path):
if self.config.data_dir.endswith(".tar.gz"):
iterator = archive_path
else:
iterator = Path(archive_path).glob("**/*")
for i, path in tqdm(enumerate(iterator), desc=f"{archive_path}"):
file = None
if isinstance(path, tuple):
path = path[0]
file = path[1]
try:
yield self.generate_example(path, file=file)
except Exception as e:
logger.warning(f"{e} failed to parse {path}")
|