File size: 9,879 Bytes
3aac9db ce34b11 3aac9db 26007fc befa200 26007fc 3aac9db 26007fc 3aac9db 26007fc 3aac9db 26007fc 3aac9db 3659aa8 3aac9db 7d2c20d 3aac9db 7d2c20d 3aac9db 7d2c20d 3aac9db 7d2c20d 3aac9db 55c3bf1 01034fb 55c3bf1 26007fc 3aac9db 82e713d 3aac9db 82e713d 3aac9db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LogiQA dataset."""
import datasets
import json
import ast
_CITATION = """\
@ARTICLE{10174688,
author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding},
year={2023},
volume={},
number={},
pages={1-16},
doi={10.1109/TASLP.2023.3293046}}
"""
_DESCRIPTION = """\
The dataset is an amendment and re-annotation of LogiQA in 2020, a large-scale logical reasoning reading comprehension dataset adapted from the Chinese Civil Service Examination. We increase the data size, refine the texts with manual translation by professionals, and improve the quality by removing items with distinctive cultural features like Chinese idioms. Furthermore, we conduct a fine-grained annotation on the dataset and turn it into a two-way natural language inference (NLI) task, resulting in 35k premise-hypothesis pairs with gold labels, making it the first large-scale NLI dataset for complex logical reasoning
"""
_HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main"
_LICENSE = (
"Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
)
_URLS = {
"logiqa2": {
"train": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/train.txt",
"validation": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/dev.txt",
"test": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/test.txt",
},
"logiqa2_zh": {
"train": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/train_zh.txt",
"validation": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/dev_zh.txt",
"test": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/test_zh.txt",
},
"logiqa2_nli": {
"train": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa2nli/DATA/QA2NLI/train.txt",
"validation": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa2nli/DATA/QA2NLI/dev.txt",
"test": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa2nli/DATA/QA2NLI/test.txt",
},
"logieval": {
"train": "https://raw.githubusercontent.com/csitfun/LogiEval/main/Data/logiqa_ood.jsonl",
"test": "https://raw.githubusercontent.com/csitfun/LogiEval/main/Data/logiqa.jsonl",
}
}
class LogiQA2(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("2.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="logiqa2",
version=VERSION,
description="The LogiQA multiple answer dataset translated in English from Chinese.",
),
datasets.BuilderConfig(
name="logiqa2_zh",
version=VERSION,
description="The original LogiQA multiple answer dataset in Chinese.",
),
datasets.BuilderConfig(
name="logiqa2_nli",
version=VERSION,
description="The NLI part of LogiQA2.0 dataset",
),
datasets.BuilderConfig(
name="logieval",
version=VERSION,
description="Instruction based MRC task",
)
]
DEFAULT_CONFIG_NAME = "logiqa2"
def _info(self):
if self.config.name == "logiqa2_zh":
features = datasets.Features(
{
"answer": datasets.Value("int32"),
"text": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
}
)
# # major_premise (maybe minor) is sometimes str, sometimes list
# # can't get it to work.
elif self.config.name == "logiqa2_nli":
features = datasets.Features(
{
"label": datasets.ClassLabel(
num_classes=2,
names=["not entailed", "entailed"],
names_file=None,
id=None,
),
"major_premise": datasets.features.Sequence(
datasets.Value("string")
),
"minor_premise": datasets.Value("string"),
"conclusion": datasets.Value("string"),
}
)
elif self.config.name == "logiqa2_nli":
features = datasets.Features({"content": datasets.Value("string"),
"ideal": datasets.Value("string")})
else:
features = datasets.Features(
{
"id": datasets.Value("int32"),
"answer": datasets.Value("int32"),
"text": datasets.Value("string"),
# "type" is a dict with arbitrary keys and values
"type": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
_urls = _URLS[self.config.name]
urls = {
"train": _urls["train"],
"test": _urls["test"],
}
if "validation" in _urls:
urls["validation"] = _urls["validation"]
data_dir = dl_manager.download_and_extract(urls)
splits = [datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
),
]
if "validation" in _urls:
splits.append(datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["validation"],
"split": "validation",
},
))
return splits
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "logiqa2_zh":
yield key, {
"answer": data["answer"],
"text": data["text"],
"question": data["question"],
"options": data["options"],
}
elif self.config.name == "logiqa2_nli":
if isinstance(data["major_premise"], str):
data["major_premise"] = [data["major_premise"]]
data["minor_premise"] = data["minor_premise"].strip()
yield key, {
"label": data["label"],
"major_premise": data["major_premise"],
"minor_premise": data["minor_premise"],
"conclusion": data["conclusion"],
}
elif self.config.name == "logieval":
yield key, {
'content': data['content'],
'ideal': data['ideal']
}
else:
yield key, {
"id": data["id"],
"answer": data["answer"],
"text": data["text"].strip(),
"type": data["type"],
"question": data["question"].strip(),
"options": [x.strip() for x in data["options"]],
}
|