Datasets:
license: cc-by-4.0
task_categories:
- image-classification
- image-segmentation
language:
- en
tags:
- remote-sensing
- sentinel-2
- sentinel-1
- sentinel-3
- marine
- coastal
- benchmark
- geospatial
- foundation-models
- ocean
- earth-observation
size_categories:
- 100K<n<1M
pretty_name: WaterBench
WaterBench: Evaluating Geospatial Foundation Models for Coastal and Marine Tasks
Overview
WaterBench is a benchmark and evaluation protocol for assessing GFMs on high-resolution (10m) radar and optical satellite imagery (Sentinel-1, Sentinel-2) across two downstream task families: image-level regression and classification (e.g., water quality, bathymetry, oil-slick detection) and pixel-level segmentation (e.g., mangroves, seagrass). We also include 300m Sentinel-3 ocean-color imagery as contextual information. WaterBench spans multiple coastal regions and seasons, defining fixed splits for in-distribution (ID) evaluation and held-out tests that are spatial (new geographies) and, where applicable, temporal (new years).
Total size: ~175 GB (44 tar archives across 6 tasks)
Tasks
| Task | Resolution | Modalities | Target / Classes | Metrics | Train | Val | Test | Spatial | Temporal |
|---|---|---|---|---|---|---|---|---|---|
| OceanState | 10 km | S1, S2, S3 | Continuous (SST, SSS, SSH, CHL, O2) | RMSE, R² | 1,400 | 200 | 400 | 200 | 200 |
| GEBCO | 500 m | S1, S2 | Continuous (depth) | RMSE, R² | 5,000 | 800 | 1,600 | 800 | 800 |
| Oil Slick | 10 m | S1, S2, S3 | Binary (oil/non-oil) | Acc, F1 | 900 | 150 | 300 | 150 | --- |
| ACA | 10 m | S1, S2 | Multi-class (benthic: 7, geomorphic: 12) | Acc, mIoU | 8,211 | 2,719 | 2,658 | 879 | --- |
| Seagrass | 10 m | S1, S2 | Binary (presence/absence) | Acc, mIoU | 832 | 114 | 222 | 124 | --- |
| GMW | 10 m | S1, S2 | Binary (mangrove extent) | Acc, mIoU | 11,012 | 1,835 | 3,670 | 1,820 | --- |
Modalities
Task Descriptions
Image-Level Tasks
OceanState (global, 2017-2023): Multi-target regression predicting five ocean variables (SST, SSS, SSH, CHL, O2) from Sentinel-1/2/3 imagery. Labels from Copernicus Marine Service (CMEMS). Spatial OOD: Polar biome. Temporal OOD: 2022-2023.
GEBCO (global, 2025 grid): Depth regression from satellite imagery in shallow coastal waters. Labels from GEBCO 2025 global bathymetry grid. Spatial OOD: Mediterranean Sea. Temporal OOD: 2022-2023.
Oil Slick (global, 2017-2023): Binary classification of oil slicks vs. lookalikes. Labels from GlobalOSD-SAR dataset. Spatial OOD: Mediterranean Sea.
Pixel-Level Tasks
- ACA (global, 2018-2020): Coral reef segmentation into geomorphic zones and benthic classes following Allen Coral Atlas taxonomy. Spatial OOD: Great Barrier Reef + Bermuda.
- Seagrass (Maldives, 2021): Binary segmentation of seagrass meadows in shallow lagoons. Spatial OOD: Northern/Southern atolls.
- GMW (global, 1996-2020): Binary segmentation of mangrove extent along tropical/subtropical coasts from Global Mangrove Watch. Spatial OOD: Sundarbans + Everglades + Niger Delta.
Data Format
All images are stored as GeoTIFF files with LZW compression, packaged in uncompressed .tar archives.
Sentinel-2 (images_s2)
- 12 bands: B02, B03, B04, B05, B06, B07, B08, B8A, B11, B12, B01, B09
- 224x224 pixels at 10m resolution (resampled from native resolutions)
- Surface reflectance values scaled to [0, 1]
Sentinel-1 (images_s1)
- 2 bands: VV, VH (backscatter)
- 224x224 pixels at 10m resolution
Sentinel-3 (images_s3) — OceanState, Oil Slick only
- 16 OLCI bands (Oa01-Oa12, Oa16-Oa18, Oa21)
- 120x120 pixels at 300m resolution
Labels
- OceanState/GEBCO: Continuous values in
metadata.csvcolumns - Oil Slick: Binary label in
metadata.csv - ACA: Per-pixel GeoTIFF masks (benthic: 7 classes, geomorphic: 12 classes)
- Seagrass/GMW: Per-pixel binary GeoTIFF masks
Repository Structure
data/
├── OceanState/
│ ├── metadata.csv
│ ├── metadata.json
│ ├── splits/{random,geographic,temporal}/{train,val,test}.txt
│ ├── OceanState-images_s2.tar
│ ├── OceanState-images_s1.tar
│ └── OceanState-images_s3.tar
├── GEBCO/
│ ├── metadata.csv, metadata.json, splits/
│ ├── GEBCO-images_s2-{00,01}.tar
│ └── GEBCO-images_s1.tar
├── OilSlick/
│ ├── metadata.csv, metadata.json, splits/
│ ├── OilSlick-images_s2-{00,...}.tar
│ ├── OilSlick-images_s1-{00,01}.tar
│ └── OilSlick-images_s3.tar
├── ACA/
│ ├── metadata.csv, metadata.json, splits/
│ ├── ACA-images_s2-{00,...}.tar
│ ├── ACA-images_s1.tar
│ ├── ACA-labels_benthic.tar
│ └── ACA-labels_geomorphic.tar
├── Seagrass/
│ ├── metadata.csv, metadata.json, splits/
│ ├── Seagrass-images_s2.tar
│ ├── Seagrass-images_s1.tar
│ └── Seagrass-labels.tar
└── GMW/
├── metadata.csv, metadata.json, splits/
├── GMW-images_s2-{00,...}.tar
├── GMW-images_s1-{00,01}.tar
└── GMW-labels.tar
Download
Full dataset
huggingface-cli download ayushprd/WaterBench --repo-type dataset --local-dir WaterBench
Single task (e.g., ACA)
huggingface-cli download ayushprd/WaterBench --repo-type dataset --include "data/ACA/*" --local-dir WaterBench
Extract archives
cd WaterBench/data/ACA
for f in *.tar; do tar xf "$f"; done
Splits
Each task provides pre-defined train/val/test splits as text files listing sample IDs (one per line).
splits/random/— Standard i.i.d. splitsplits/geographic/— Spatial OOD: held-out geographic regions in test setsplits/temporal/— Temporal OOD: held-out years in test set (OceanState, GEBCO only)
Loading splits in Python
from pathlib import Path
task_dir = Path("WaterBench/data/OceanState")
train_ids = task_dir.joinpath("splits/random/train.txt").read_text().strip().split("\n")
val_ids = task_dir.joinpath("splits/random/val.txt").read_text().strip().split("\n")
test_ids = task_dir.joinpath("splits/random/test.txt").read_text().strip().split("\n")
License
This dataset is released under the CC-BY-4.0 license.



