File size: 1,263 Bytes
68e8a69 8a00b91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
dataset_info:
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: label
dtype: int32
- name: label_text
dtype: string
- name: idx
dtype: int64
- name: query_idx
dtype: int64
- name: positive_idx
dtype: int64
- name: negative_idx
dtype: int64
splits:
- name: train
num_bytes: 1487475
num_examples: 15667
download_size: 912396
dataset_size: 1487475
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# MTEB MTOP Domain Triplets Dataset
This dataset was used in the paper GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning. Refer to https://arxiv.org/abs/2402.16829 for details.
The code for generating the data is available at https://github.com/avsolatorio/GISTEmbed/blob/main/scripts/create_classification_dataset.py.
## Citation
```
@article{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
journal={arXiv preprint arXiv:2402.16829},
year={2024},
URL={https://arxiv.org/abs/2402.16829}
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
``` |