File size: 4,992 Bytes
aee3e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d082105
aee3e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os

import datasets


_CITATION = """\
@misc{efrat2021cryptonite,
      title={Cryptonite: A Cryptic Crossword Benchmark for Extreme Ambiguity in Language},
      author={Avia Efrat and Uri Shaham and Dan Kilman and Omer Levy},
      year={2021},
      eprint={2103.01242},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
Cryptonite: A Cryptic Crossword Benchmark for Extreme Ambiguity in Language
Current NLP datasets targeting ambiguity can be solved by a native speaker with relative ease. We present Cryptonite,
a large-scale dataset based on cryptic crosswords, which is both linguistically complex and naturally sourced. Each
example in Cryptonite is a cryptic clue, a short phrase or sentence with a misleading surface reading, whose solving
requires disambiguating semantic, syntactic, and phonetic wordplays, as well as world knowledge. Cryptic clues pose a
challenge even for experienced solvers, though top-tier experts can solve them with almost 100% accuracy. Cryptonite
is a challenging task for current models; fine-tuning T5-Large on 470k cryptic clues achieves only 7.6% accuracy, on
par with the accuracy of a rule-based clue solver (8.6%).
"""

_HOMEPAGE = "https://github.com/aviaefrat/cryptonite"

_LICENSE = "cc-by-nc-4.0"

_URL = "https://github.com/aviaefrat/cryptonite/blob/main/data/cryptonite-official-split.zip?raw=true"


class Cryptonite(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="cryptonite", version=VERSION),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=datasets.Features(
                {
                    "clue": datasets.Value("string"),
                    "answer": datasets.Value("string"),
                    "enumeration": datasets.Value("string"),
                    "publisher": datasets.Value("string"),
                    "date": datasets.Value("int64"),
                    "quick": datasets.Value("bool"),
                    "id": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "cryptonite-official-split/cryptonite-train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "cryptonite-official-split/cryptonite-val.jsonl"),
                    "split": "val",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "cryptonite-official-split/cryptonite-test.jsonl"),
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""

        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)

                publisher = data["publisher"]
                crossword_id = data["crossword_id"]
                number = data["number"]
                orientation = data["orientation"]
                d_id = f"{publisher}-{crossword_id}-{number}{orientation}"

                yield id_, {
                    "clue": data["clue"],
                    "answer": data["answer"],
                    "enumeration": data["enumeration"],
                    "publisher": publisher,
                    "date": data["date"],
                    "quick": data["quick"],
                    "id": d_id,
                }