Datasets:

Modalities:
Audio
Text
Formats:
parquet
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
pandas
cifkao commited on
Commit
5b65248
1 Parent(s): 27752fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -8
README.md CHANGED
@@ -155,17 +155,18 @@ See the [project website](https://audioshake.github.io/jam-alt/) for details.
155
 
156
  ```python
157
  from datasets import load_dataset
158
- dataset = load_dataset("audioshake/jam-alt")["test"]
159
  ```
160
 
161
  A subset is defined for each language (`en`, `fr`, `de`, `es`);
162
  for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs.
163
 
164
- By default, the dataset comes with audio. To skip loading the audio, use `with_audio=False`.
165
  To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
166
  Useful arguments to `datasets.Audio()` are:
167
  - `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
168
- - `decode=False` to skip decoding the audio and just get the MP3 file paths.
 
 
169
 
170
  ## Running the benchmark
171
 
@@ -174,14 +175,14 @@ The evaluation is implemented in our [`alt-eval` package](https://github.com/aud
174
  from datasets import load_dataset
175
  from alt_eval import compute_metrics
176
 
177
- dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0")["test"]
178
  # transcriptions: list[str]
179
  compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
180
  ```
181
 
182
  For example, the following code can be used to evaluate Whisper:
183
  ```python
184
- dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0")["test"]
185
  dataset = dataset.cast_column("audio", datasets.Audio(decode=False)) # Get the raw audio file, let Whisper decode it
186
 
187
  model = whisper.load_model("tiny")
@@ -191,9 +192,9 @@ transcriptions = [
191
  ]
192
  compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
193
  ```
194
- Alternatively, if you already have transcriptions, you might prefer to skip loading the audio:
195
  ```python
196
- dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0", with_audio=False)["test"]
197
  ```
198
 
199
  ## Citation
@@ -221,4 +222,4 @@ When using the benchmark, please cite [our paper](https://www.arxiv.org/abs/2408
221
  address={Rhodes Island, Greece},
222
  doi={10.1109/ICASSP49357.2023.10096725}
223
  }
224
- ```
 
155
 
156
  ```python
157
  from datasets import load_dataset
158
+ dataset = load_dataset("audioshake/jam-alt", split="test")
159
  ```
160
 
161
  A subset is defined for each language (`en`, `fr`, `de`, `es`);
162
  for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs.
163
 
 
164
  To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
165
  Useful arguments to `datasets.Audio()` are:
166
  - `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
167
+ - `decode=False` to skip decoding the audio and just get the MP3 file paths and contents.
168
+
169
+ The `load_dataset` function also accepts a `columns` parameter, which can be useful for example if you want to skip downloading the audio (see the example below).
170
 
171
  ## Running the benchmark
172
 
 
175
  from datasets import load_dataset
176
  from alt_eval import compute_metrics
177
 
178
+ dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0", split="test")
179
  # transcriptions: list[str]
180
  compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
181
  ```
182
 
183
  For example, the following code can be used to evaluate Whisper:
184
  ```python
185
+ dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0", split="test")
186
  dataset = dataset.cast_column("audio", datasets.Audio(decode=False)) # Get the raw audio file, let Whisper decode it
187
 
188
  model = whisper.load_model("tiny")
 
192
  ]
193
  compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
194
  ```
195
+ Alternatively, if you already have transcriptions, you might prefer to skip loading the `audio` column:
196
  ```python
197
+ dataset = load_dataset("audioshake/jam-alt", revision="v1.0.0", split="test", columns=["name", "text", "language", "license_type"])
198
  ```
199
 
200
  ## Citation
 
222
  address={Rhodes Island, Greece},
223
  doi={10.1109/ICASSP49357.2023.10096725}
224
  }
225
+ ```