|
"""HuggingFace loading script for the JamALT dataset.""" |
|
|
|
|
|
import csv |
|
from dataclasses import dataclass |
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import datasets |
|
|
|
|
|
_VERSION = "1.0.0" |
|
|
|
|
|
_CITATION = """\ |
|
@misc{cifka-2023-jam-alt, |
|
author = {Ond\v{r}ej C\'ifka and |
|
Constantinos Dimitriou and |
|
{Cheng-i} Wang and |
|
Hendrik Schreiber and |
|
Luke Miner and |
|
Fabian-Robert St\"oter}, |
|
title = {{Jam-ALT}: A Formatting-Aware Lyrics Transcription Benchmark}, |
|
eprint = {arXiv:2311.13987}, |
|
year = 2023 |
|
} |
|
@inproceedings{durand-2023-contrastive, |
|
author={Durand, Simon and Stoller, Daniel and Ewert, Sebastian}, |
|
booktitle={2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
|
title={Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages}, |
|
year={2023}, |
|
pages={1-5}, |
|
address={Rhodes Island, Greece}, |
|
doi={10.1109/ICASSP49357.2023.10096725} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Jam-ALT: A formatting-aware lyrics transcription benchmark. |
|
""" |
|
|
|
_HOMEPAGE = "https://audioshake.github.io/jam-alt" |
|
|
|
_METADATA_FILENAME = "metadata.csv" |
|
|
|
|
|
_LANGUAGE_NAME_TO_CODE = { |
|
"English": "en", |
|
"French": "fr", |
|
"German": "de", |
|
"Spanish": "es", |
|
} |
|
|
|
|
|
@dataclass |
|
class JamAltBuilderConfig(datasets.BuilderConfig): |
|
language: Optional[str] = None |
|
with_audio: bool = True |
|
decode_audio: bool = True |
|
sampling_rate: Optional[int] = None |
|
mono: bool = True |
|
|
|
|
|
class JamAltDataset(datasets.GeneratorBasedBuilder): |
|
_DESCRIPTION |
|
|
|
VERSION = datasets.Version(_VERSION) |
|
BUILDER_CONFIG_CLASS = JamAltBuilderConfig |
|
BUILDER_CONFIGS = [JamAltBuilderConfig("all")] + [ |
|
JamAltBuilderConfig(lang, language=lang) |
|
for lang in _LANGUAGE_NAME_TO_CODE.values() |
|
] |
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
feat_dict = { |
|
"name": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"license_type": datasets.Value("string"), |
|
} |
|
if self.config.with_audio: |
|
feat_dict["audio"] = datasets.Audio( |
|
decode=self.config.decode_audio, |
|
sampling_rate=self.config.sampling_rate, |
|
mono=self.config.mono, |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(feat_dict), |
|
supervised_keys=("audio", "text") if "audio" in feat_dict else None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
metadata_path = dl_manager.download(_METADATA_FILENAME) |
|
|
|
audio_paths, text_paths, metadata = [], [], [] |
|
with open(metadata_path, encoding="utf-8") as f: |
|
for row in csv.DictReader(f): |
|
if ( |
|
self.config.language is None |
|
or _LANGUAGE_NAME_TO_CODE[row["Language"]] == self.config.language |
|
): |
|
audio_paths.append("audio/" + row["Filepath"]) |
|
text_paths.append( |
|
"lyrics/" + os.path.splitext(row["Filepath"])[0] + ".txt" |
|
) |
|
metadata.append(row) |
|
|
|
text_paths = dl_manager.download(text_paths) |
|
audio_paths = ( |
|
dl_manager.download(audio_paths) if self.config.with_audio else None |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs=dict( |
|
text_paths=text_paths, |
|
audio_paths=audio_paths, |
|
metadata=metadata, |
|
), |
|
), |
|
] |
|
|
|
def _generate_examples(self, text_paths, audio_paths, metadata): |
|
if audio_paths is None: |
|
audio_paths = [None] * len(text_paths) |
|
for text_path, audio_path, meta in zip(text_paths, audio_paths, metadata): |
|
name = os.path.splitext(meta["Filepath"])[0] |
|
with open(text_path, encoding="utf-8") as text_f: |
|
record = { |
|
"name": name, |
|
"text": text_f.read(), |
|
"language": _LANGUAGE_NAME_TO_CODE[meta["Language"]], |
|
"license_type": meta["LicenseType"], |
|
} |
|
if audio_path is not None: |
|
record["audio"] = audio_path |
|
yield name, record |
|
|