Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Sub-tasks:
visual-question-answering
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 12,232 Bytes
56d97b3 c4d2852 56d97b3 a9c7ae3 56d97b3 e0c9133 56d97b3 e0c9133 56d97b3 a9c7ae3 56d97b3 a9c7ae3 56d97b3 a9c7ae3 56d97b3 a9c7ae3 56d97b3 a9c7ae3 56d97b3 e3be5f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gzip
import json
import os
import datasets
class CompguesswhatConfig(datasets.BuilderConfig):
"""BuilderConfig for CompGuessWhat?!"""
def __init__(self, data_url, splits, gameplay_scenario, **kwargs):
"""
Args:
gameplay_scenario: to specify if we want to load original CompGuessWhat?! split ('original') or
the zero-shot reference games based on NOCAPS images ('zero_shot')
**kwargs: keyword arguments forwarded to super.
"""
super(CompguesswhatConfig, self).__init__(
version=datasets.Version("0.2.0", "Second CompGuessWhat?! release"), **kwargs
)
assert gameplay_scenario in (
"original",
"zero_shot",
), "Invalid choice for parameter 'gameplay_scenario': {gameplay_scenario}. Valid values are ('original', 'zero_shot')."
self.gameplay_scenario = gameplay_scenario
self.splits = splits
self.data_url = data_url
class Compguesswhat(datasets.GeneratorBasedBuilder):
_CITATION = """\
@inproceedings{suglia2020compguesswhat,
title={CompGuessWhat?!: a Multi-task Evaluation Framework for Grounded Language Learning},
author={Suglia, Alessandro, Konstas, Ioannis, Vanzo, Andrea, Bastianelli, Emanuele, Desmond Elliott, Stella Frank and Oliver Lemon},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
"""
_DESCRIPTION = """
CompGuessWhat?! is an instance of a multi-task framework for evaluating the quality of learned neural representations,
in particular concerning attribute grounding. Use this dataset if you want to use the set of games whose reference
scene is an image in VisualGenome. Visit the website for more details: https://compguesswhat.github.io
"""
BUILDER_CONFIGS = [
CompguesswhatConfig(
name="compguesswhat-original",
gameplay_scenario="original",
description="CompGuessWhat?! subset of games from the original GuessWhat?! dataset",
data_url="https://www.dropbox.com/s/qd9wlydpkpmq8rr/compguesswhat-original.zip?dl=1",
splits={
"train": "compguesswhat.train.jsonl.gz",
"valid": "compguesswhat.valid.jsonl.gz",
"test": "compguesswhat.test.jsonl.gz",
},
),
CompguesswhatConfig(
name="compguesswhat-zero_shot",
gameplay_scenario="zero_shot",
description="CompGuessWhat?! reference set of games for zero-shot evaluation using NOCAPS images",
data_url="https://www.dropbox.com/s/f5o2t7aiok7kpcm/compguesswhat-zero_shot.zip?dl=1",
splits={
"nd_valid": "compguesswhat.nd_valid.jsonl.gz",
"nd_test": "compguesswhat.nd_test.jsonl.gz",
"od_valid": "compguesswhat.od_valid.jsonl.gz",
"od_test": "compguesswhat.od_test.jsonl.gz",
},
),
]
VERSION = datasets.Version("0.2.0")
def _info(self):
if self.config.gameplay_scenario == "original":
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=self._DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"id": datasets.Value("int32"),
"target_id": datasets.Value("int32"),
"timestamp": datasets.Value("string"),
"status": datasets.Value("string"),
"image": {
# this is the image ID in GuessWhat?! which corresponds to the MSCOCO id
"id": datasets.Value("int32"),
"file_name": datasets.Value("string"),
"flickr_url": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"height": datasets.Value("int32"),
"width": datasets.Value("int32"),
# this field represents the corresponding image metadata that can be found in VisualGenome
# in the file image_data.json
# We copy it over so that we avoid any confusion or possible wrong URL
# Please use the original image files to resolve photos
"visual_genome": {
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"url": datasets.Value("string"),
"coco_id": datasets.Value("int32"),
# this is the actual VisualGenome image ID
# because we can't rely store it as an integer we same it as string
"flickr_id": datasets.Value("string"),
"image_id": datasets.Value("string"),
},
},
"qas": datasets.features.Sequence(
{
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"id": datasets.Value("int32"),
}
),
"objects": datasets.features.Sequence(
{
"id": datasets.Value("int32"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.Value("string"),
"area": datasets.Value("float32"),
"category_id": datasets.Value("int32"),
"segment": datasets.features.Sequence(
datasets.features.Sequence(datasets.Value("float32"))
),
}
),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://compguesswhat.github.io/",
citation=self._CITATION,
)
elif self.config.gameplay_scenario == "zero_shot":
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=self._DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"id": datasets.Value("int32"),
"target_id": datasets.Value("string"),
"status": datasets.Value("string"),
"image": {
"id": datasets.Value("int32"),
"file_name": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"height": datasets.Value("int32"),
"width": datasets.Value("int32"),
"license": datasets.Value("int32"),
"open_images_id": datasets.Value("string"),
"date_captured": datasets.Value("string"),
},
"objects": datasets.features.Sequence(
{
"id": datasets.Value("string"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.Value("string"),
"area": datasets.Value("float32"),
"category_id": datasets.Value("int32"),
"IsOccluded": datasets.Value("int32"),
"IsTruncated": datasets.Value("int32"),
"segment": datasets.features.Sequence(
{
"MaskPath": datasets.Value("string"),
"LabelName": datasets.Value("string"),
"BoxID": datasets.Value("string"),
"BoxXMin": datasets.Value("string"),
"BoxXMax": datasets.Value("string"),
"BoxYMin": datasets.Value("string"),
"BoxYMax": datasets.Value("string"),
"PredictedIoU": datasets.Value("string"),
"Clicks": datasets.Value("string"),
}
),
}
),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://compguesswhat.github.io/",
citation=self._CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(self.config.data_url)
splits_gen = []
for split_id, split_filename in self.config.splits.items():
if self.config.gameplay_scenario == "original":
if "train" in split_id:
split_name = datasets.Split.TRAIN
elif "valid" in split_id:
split_name = datasets.Split.VALIDATION
elif "test" in split_id:
split_name = datasets.Split.TEST
else:
split_name = datasets.Split(split_id)
full_split_name = "-".join(["compguesswhat", self.config.gameplay_scenario])
splits_gen.append(
datasets.SplitGenerator(
name=split_name,
gen_kwargs={
"filepath": os.path.join(
dl_dir,
full_split_name,
self.VERSION.version_str,
split_filename,
)
},
)
)
return splits_gen
def _generate_examples(self, filepath):
def _extract_game_tuple(data):
data = data.decode("utf-8")
game = json.loads(data.strip("\n"))
# we refactor the data structure a bit to fit with the new version
game["target_id"] = game["object_id"]
if "object_id" in game:
del game["object_id"]
if "questioner_id" in game:
del game["questioner_id"]
###
if "visual_genome" in game["image"]:
# We need to cast it to string so that we avoid issues with int size
game["image"]["visual_genome"]["image_id"] = str(game["image"]["visual_genome"]["image_id"])
game["image"]["visual_genome"]["flickr_id"] = str(game["image"]["visual_genome"]["flickr_id"])
return game["id"], game
"""Yields examples."""
with open(filepath, "rb") as gzip_file:
with gzip.open(gzip_file) as in_file:
for data in in_file:
yield _extract_game_tuple(data)
|