add slue-sqa5 loading script (#3)
Browse files- add slue-sqa5 loading script to slue-phase-2.py (ad4e9da397e39d947d001715bdd6fc64349bb135)
- slue-phase-2.py +114 -2
slue-phase-2.py
CHANGED
@@ -13,6 +13,7 @@ _URL = "https://asappresearch.github.io/slue-toolkit/"
|
|
13 |
|
14 |
_DL_URLS = {
|
15 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
|
|
16 |
}
|
17 |
|
18 |
_LICENSE = """
|
@@ -40,6 +41,21 @@ SLUE-HVB dataset contains a subset of the Gridspace-Stanford Harper Valley speec
|
|
40 |
|
41 |
Additionally, we provide dialog act classification annotation and it is covered with the same license as CC-BY-4.0.
|
42 |
=======================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
"""
|
45 |
|
@@ -56,6 +72,31 @@ _DESCRIPTION = """\
|
|
56 |
Spoken Language Understanding Evaluation (SLUE) benchmark Phase 2.
|
57 |
"""
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
class SLUE2Config(datasets.BuilderConfig):
|
60 |
"""BuilderConfig for SLUE."""
|
61 |
|
@@ -83,6 +124,10 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
83 |
name="hvb",
|
84 |
description="SLUE-HVB set.",
|
85 |
),
|
|
|
|
|
|
|
|
|
86 |
]
|
87 |
|
88 |
def _info(self):
|
@@ -102,6 +147,34 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
102 |
datasets.Value("string"),
|
103 |
),
|
104 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
return datasets.DatasetInfo(
|
106 |
description=_DESCRIPTION,
|
107 |
features=datasets.Features(features),
|
@@ -148,13 +221,28 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
148 |
},
|
149 |
),
|
150 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
return splits
|
152 |
|
153 |
def _generate_examples(self, filepath, data_dir):
|
154 |
logger.info(f"generating examples from = {filepath}")
|
155 |
|
156 |
with open(filepath) as f:
|
157 |
-
|
|
|
|
|
|
|
158 |
|
159 |
for idx, row in enumerate(reader):
|
160 |
if self.config.name == "hvb":
|
@@ -176,4 +264,28 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
176 |
"intent": row["intent"],
|
177 |
"dialog_acts": eval(row.get("dialog_acts", "[]")),
|
178 |
}
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
_DL_URLS = {
|
15 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
16 |
+
"slue-sqa5": "data/slue-sqa5_blind.zip",
|
17 |
}
|
18 |
|
19 |
_LICENSE = """
|
|
|
41 |
|
42 |
Additionally, we provide dialog act classification annotation and it is covered with the same license as CC-BY-4.0.
|
43 |
=======================================================
|
44 |
+
SLUE-SQA-5 Dataset
|
45 |
+
|
46 |
+
SLUE-SQA-5 Dataset contains question texts and answer strings (question_text, normalized_question_text, and answer_spans column in .tsv files) from these datasets,
|
47 |
+
* SQuAD1.1 (for questions whose question_id starts with ‘squad-’)
|
48 |
+
* Natural Questions (for questions whose question_id starts with ‘nq-’)
|
49 |
+
* WebQuestions (for questions whose question_id starts with ‘wq-’)
|
50 |
+
* CuratedTREC (for questions whose question_id starts with ‘trec-’)
|
51 |
+
* TriviaQA (for questions whose question_id starts with ‘triviaqa-’)
|
52 |
+
Additionally, we provide audio recordings (.wav files in “question” directories) of these questions.
|
53 |
+
|
54 |
+
For questions from TriviaQA (questions whose question_id starts with ‘triviaqa-’), their question texts, answer strings, and audio recordings are licensed with the same Apache License 2.0 as TriviaQA (for more detail, please refer to https://github.com/mandarjoshi90/triviaqa/blob/master/LICENSE).
|
55 |
+
For questions from the other 4 datasets, their question texts, answer strings, and audio recordings are licensed with Creative Commons Attribution-ShareAlike 4.0 International license.
|
56 |
+
|
57 |
+
SLUE-SQA-5 also contains a subset of Spoken Wikipedia, including the audios placed in “document” directories and their transcripts (document_text and normalized_document_text column in .tsv files). Additionally, we provide the text-to-speech alignments (.txt files in “word2time” directories).These contents are licensed with the same Creative Commons (CC BY-SA 4.0) license as Spoken Wikipedia.
|
58 |
+
=======================================================
|
59 |
|
60 |
"""
|
61 |
|
|
|
72 |
Spoken Language Understanding Evaluation (SLUE) benchmark Phase 2.
|
73 |
"""
|
74 |
|
75 |
+
def parse_qa_answer_spans(answer_spans):
|
76 |
+
answer_spans = ast.literal_eval(answer_spans)
|
77 |
+
return [{"answer": a, "start_second": s, "end_second": e} for a, s, e in answer_spans]
|
78 |
+
|
79 |
+
def load_word2time(word2time_file):
|
80 |
+
word2time = []
|
81 |
+
with open(word2time_file, "r") as f:
|
82 |
+
for line in f.readlines():
|
83 |
+
entity = line.strip().split('\t')
|
84 |
+
if len(entity)==1:
|
85 |
+
word = entity[0]
|
86 |
+
normalized_word, start_sec, end_sec = "", -1.0, -1.0
|
87 |
+
else:
|
88 |
+
word, normalized_word, start_sec, end_sec = entity
|
89 |
+
start_sec, end_sec = float(start_sec), float(end_sec)
|
90 |
+
word2time.append(
|
91 |
+
{
|
92 |
+
"word": word,
|
93 |
+
"normalized_word": normalized_word,
|
94 |
+
"start_second": start_sec,
|
95 |
+
"end_second": end_sec,
|
96 |
+
}
|
97 |
+
)
|
98 |
+
return word2time
|
99 |
+
|
100 |
class SLUE2Config(datasets.BuilderConfig):
|
101 |
"""BuilderConfig for SLUE."""
|
102 |
|
|
|
124 |
name="hvb",
|
125 |
description="SLUE-HVB set.",
|
126 |
),
|
127 |
+
SLUE2Config(
|
128 |
+
name="sqa5",
|
129 |
+
description="SLUE-SQA-5 set which includes Spoken Question Answering task.",
|
130 |
+
),
|
131 |
]
|
132 |
|
133 |
def _info(self):
|
|
|
147 |
datasets.Value("string"),
|
148 |
),
|
149 |
}
|
150 |
+
elif self.config.name == "sqa5":
|
151 |
+
features = {
|
152 |
+
"question_id": datasets.Value("string"),
|
153 |
+
"question_audio": datasets.Audio(sampling_rate=16_000),
|
154 |
+
"question_speaker_id": datasets.Value("string"),
|
155 |
+
"raw_question_text": datasets.Value("string"),
|
156 |
+
"normalized_question_text": datasets.Value("string"),
|
157 |
+
"document_id": datasets.Value("string"),
|
158 |
+
"document_audio": datasets.Audio(sampling_rate=16_000),
|
159 |
+
"document_speaker_id": datasets.Value("string"),
|
160 |
+
"raw_document_text": datasets.Value("string"),
|
161 |
+
"normalized_document_text": datasets.Value("string"),
|
162 |
+
"word2time": datasets.Sequence(
|
163 |
+
{
|
164 |
+
"word": datasets.Value("string"),
|
165 |
+
"normalized_word": datasets.Value("string"),
|
166 |
+
"start_second": datasets.Value("float64"),
|
167 |
+
"end_second": datasets.Value("float64"),
|
168 |
+
}
|
169 |
+
),
|
170 |
+
"answer_spans": datasets.Sequence(
|
171 |
+
{
|
172 |
+
"answer": datasets.Value("string"),
|
173 |
+
"start_second": datasets.Value("float64"),
|
174 |
+
"end_second": datasets.Value("float64"),
|
175 |
+
}
|
176 |
+
),
|
177 |
+
}
|
178 |
return datasets.DatasetInfo(
|
179 |
description=_DESCRIPTION,
|
180 |
features=datasets.Features(features),
|
|
|
221 |
},
|
222 |
),
|
223 |
]
|
224 |
+
if self.config.name == "sqa5":
|
225 |
+
splits.append(
|
226 |
+
datasets.SplitGenerator(
|
227 |
+
name="verified_test",
|
228 |
+
gen_kwargs={
|
229 |
+
"filepath": os.path.join(
|
230 |
+
data_dir or "", f"{config_name}_verified-test_blind.tsv"
|
231 |
+
),
|
232 |
+
"data_dir": data_dir,
|
233 |
+
},
|
234 |
+
)
|
235 |
+
)
|
236 |
return splits
|
237 |
|
238 |
def _generate_examples(self, filepath, data_dir):
|
239 |
logger.info(f"generating examples from = {filepath}")
|
240 |
|
241 |
with open(filepath) as f:
|
242 |
+
if self.config.name == "sqa5":
|
243 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
244 |
+
else:
|
245 |
+
reader = csv.DictReader(f, delimiter="\t")
|
246 |
|
247 |
for idx, row in enumerate(reader):
|
248 |
if self.config.name == "hvb":
|
|
|
264 |
"intent": row["intent"],
|
265 |
"dialog_acts": eval(row.get("dialog_acts", "[]")),
|
266 |
}
|
267 |
+
elif self.config.name == "sqa5":
|
268 |
+
question_audio_file = os.path.join(
|
269 |
+
data_dir, row["split"], "question", row["question_id"] + ".wav"
|
270 |
+
)
|
271 |
+
document_audio_file = os.path.join(
|
272 |
+
data_dir, row["split"], "document", row["document_id"] + ".wav"
|
273 |
+
)
|
274 |
+
word2time_file = os.path.join(
|
275 |
+
data_dir, row["split"], "word2time", row["document_id"] + ".txt"
|
276 |
+
)
|
277 |
+
example = {
|
278 |
+
"question_id": row["question_id"],
|
279 |
+
"question_audio": question_audio_file,
|
280 |
+
"question_speaker_id": row["question_speaker_id"],
|
281 |
+
"raw_question_text": row["question_text"],
|
282 |
+
"normalized_question_text": row["normalized_question_text"],
|
283 |
+
"document_id": row["document_id"],
|
284 |
+
"document_audio": document_audio_file,
|
285 |
+
"document_speaker_id": row["document_speaker_id"],
|
286 |
+
"raw_document_text": row["document_text"],
|
287 |
+
"normalized_document_text": row["normalized_document_text"],
|
288 |
+
"word2time": load_word2time(word2time_file),
|
289 |
+
"answer_spans": parse_qa_answer_spans(row.get("answer_spans", "[]")),
|
290 |
+
}
|
291 |
+
yield idx, example
|