add slue-vp_nel config to slue-phase-2.py (#5)
Browse files- add slue-vp_nel config to slue-phase-2.py (5a0039a8d7ec6b09041e7ab16c1039f23cc007dc)
Co-authored-by: Ankita Pasd <ankitap@users.noreply.huggingface.co>
- slue-phase-2.py +112 -27
slue-phase-2.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import csv
|
4 |
import ast
|
5 |
import gzip
|
|
|
6 |
|
7 |
import datasets
|
8 |
from datasets.utils.logging import get_logger
|
@@ -14,6 +15,7 @@ _URL = "https://asappresearch.github.io/slue-toolkit/"
|
|
14 |
_DL_URLS = {
|
15 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
16 |
"slue-sqa5": "data/slue-sqa5_blind.zip",
|
|
|
17 |
}
|
18 |
|
19 |
_LICENSE = """
|
@@ -56,6 +58,11 @@ For questions from the other 4 datasets, their question texts, answer strings, a
|
|
56 |
|
57 |
SLUE-SQA-5 also contains a subset of Spoken Wikipedia, including the audios placed in “document” directories and their transcripts (document_text and normalized_document_text column in .tsv files). Additionally, we provide the text-to-speech alignments (.txt files in “word2time” directories).These contents are licensed with the same Creative Commons (CC BY-SA 4.0) license as Spoken Wikipedia.
|
58 |
=======================================================
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
"""
|
61 |
|
@@ -97,6 +104,26 @@ def load_word2time(word2time_file):
|
|
97 |
)
|
98 |
return word2time
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
class SLUE2Config(datasets.BuilderConfig):
|
101 |
"""BuilderConfig for SLUE."""
|
102 |
|
@@ -128,6 +155,10 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
128 |
name="sqa5",
|
129 |
description="SLUE-SQA-5 set which includes Spoken Question Answering task.",
|
130 |
),
|
|
|
|
|
|
|
|
|
131 |
]
|
132 |
|
133 |
def _info(self):
|
@@ -175,6 +206,30 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
175 |
}
|
176 |
),
|
177 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
return datasets.DatasetInfo(
|
179 |
description=_DESCRIPTION,
|
180 |
features=datasets.Features(features),
|
@@ -194,33 +249,42 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
194 |
data_dir = os.path.join(dl_dir, config_name)
|
195 |
print(data_dir)
|
196 |
|
197 |
-
splits = [
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
data_dir
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
if self.config.name == "sqa5":
|
225 |
splits.append(
|
226 |
datasets.SplitGenerator(
|
@@ -288,4 +352,25 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
288 |
"word2time": load_word2time(word2time_file),
|
289 |
"answer_spans": parse_qa_answer_spans(row.get("answer_spans", "[]")),
|
290 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
yield idx, example
|
|
|
3 |
import csv
|
4 |
import ast
|
5 |
import gzip
|
6 |
+
import json
|
7 |
|
8 |
import datasets
|
9 |
from datasets.utils.logging import get_logger
|
|
|
15 |
_DL_URLS = {
|
16 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
17 |
"slue-sqa5": "data/slue-sqa5_blind.zip",
|
18 |
+
"slue-vp_nel": "data/slue-vp_nel_blind.zip",
|
19 |
}
|
20 |
|
21 |
_LICENSE = """
|
|
|
58 |
|
59 |
SLUE-SQA-5 also contains a subset of Spoken Wikipedia, including the audios placed in “document” directories and their transcripts (document_text and normalized_document_text column in .tsv files). Additionally, we provide the text-to-speech alignments (.txt files in “word2time” directories).These contents are licensed with the same Creative Commons (CC BY-SA 4.0) license as Spoken Wikipedia.
|
60 |
=======================================================
|
61 |
+
SLUE-VP-NEL Dataset
|
62 |
+
|
63 |
+
SLUE-VP-NEL includes word-level time stamps for dev and test splits of the SLUE-voxpopuli corpus.
|
64 |
+
For the dev split, the dataset also contains named entity annotations and corresponding time-stamps in a tsv format.
|
65 |
+
=======================================================
|
66 |
|
67 |
"""
|
68 |
|
|
|
104 |
)
|
105 |
return word2time
|
106 |
|
107 |
+
def parse_nel_time_spans(nel_timestamps):
|
108 |
+
nel_timestamps = ast.literal_eval(nel_timestamps)
|
109 |
+
return [
|
110 |
+
{
|
111 |
+
"ne_label": ne,
|
112 |
+
"start_char_idx": start,
|
113 |
+
"char_offset": off,
|
114 |
+
"start_sec": t0,
|
115 |
+
"end_sec": t1,
|
116 |
+
}
|
117 |
+
for ne, start, off, t0, t1 in nel_timestamps
|
118 |
+
]
|
119 |
+
|
120 |
+
def read_word_timestamps(word_alignments_fn):
|
121 |
+
data = json.loads(open(word_alignments_fn).read())
|
122 |
+
return [
|
123 |
+
{"word": word, "start_sec": start, "end_sec": end}
|
124 |
+
for word, start, end in data["timestamps"]
|
125 |
+
]
|
126 |
+
|
127 |
class SLUE2Config(datasets.BuilderConfig):
|
128 |
"""BuilderConfig for SLUE."""
|
129 |
|
|
|
155 |
name="sqa5",
|
156 |
description="SLUE-SQA-5 set which includes Spoken Question Answering task.",
|
157 |
),
|
158 |
+
SLUE2Config(
|
159 |
+
name="vp_nel",
|
160 |
+
description="SLUE-VP-NEL set with named entity labels and time-stamps.",
|
161 |
+
),
|
162 |
]
|
163 |
|
164 |
def _info(self):
|
|
|
206 |
}
|
207 |
),
|
208 |
}
|
209 |
+
elif self.config.name == "vp_nel":
|
210 |
+
features = {
|
211 |
+
"id": datasets.Value("string"),
|
212 |
+
"split": datasets.Value("string"),
|
213 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
214 |
+
"speaker_id": datasets.Value("string"),
|
215 |
+
"normalized_text": datasets.Value("string"),
|
216 |
+
"word_timestamps": datasets.Sequence(
|
217 |
+
{
|
218 |
+
"word": datasets.Value("string"),
|
219 |
+
"start_sec": datasets.Value("float64"),
|
220 |
+
"end_sec": datasets.Value("float64"),
|
221 |
+
}
|
222 |
+
),
|
223 |
+
"normalized_nel": datasets.Sequence(
|
224 |
+
{
|
225 |
+
"ne_label": datasets.Value("string"),
|
226 |
+
"start_char_idx": datasets.Value("int32"),
|
227 |
+
"char_offset": datasets.Value("int32"),
|
228 |
+
"start_sec": datasets.Value("float64"),
|
229 |
+
"end_sec": datasets.Value("float64"),
|
230 |
+
}
|
231 |
+
),
|
232 |
+
}
|
233 |
return datasets.DatasetInfo(
|
234 |
description=_DESCRIPTION,
|
235 |
features=datasets.Features(features),
|
|
|
249 |
data_dir = os.path.join(dl_dir, config_name)
|
250 |
print(data_dir)
|
251 |
|
252 |
+
splits = []
|
253 |
+
if self.config.name in ["hvb", "sqa5"]:
|
254 |
+
splits.append(
|
255 |
+
datasets.SplitGenerator(
|
256 |
+
name=datasets.Split.TRAIN,
|
257 |
+
gen_kwargs={
|
258 |
+
"filepath": os.path.join(
|
259 |
+
data_dir or "", f"{config_name}_fine-tune.tsv"
|
260 |
+
),
|
261 |
+
"data_dir": data_dir,
|
262 |
+
},
|
263 |
+
)
|
264 |
+
)
|
265 |
+
if self.config.name in ["hvb", "sqa5", "vp_nel"]:
|
266 |
+
splits.append(
|
267 |
+
datasets.SplitGenerator(
|
268 |
+
name=datasets.Split.VALIDATION,
|
269 |
+
gen_kwargs={
|
270 |
+
"filepath": os.path.join(
|
271 |
+
data_dir or "", f"{config_name}_dev.tsv"
|
272 |
+
),
|
273 |
+
"data_dir": data_dir,
|
274 |
+
},
|
275 |
+
),
|
276 |
+
)
|
277 |
+
splits.append(
|
278 |
+
datasets.SplitGenerator(
|
279 |
+
name=datasets.Split.TEST,
|
280 |
+
gen_kwargs={
|
281 |
+
"filepath": os.path.join(
|
282 |
+
data_dir or "", f"{config_name}_test_blind.tsv"
|
283 |
+
),
|
284 |
+
"data_dir": data_dir,
|
285 |
+
},
|
286 |
+
),
|
287 |
+
)
|
288 |
if self.config.name == "sqa5":
|
289 |
splits.append(
|
290 |
datasets.SplitGenerator(
|
|
|
352 |
"word2time": load_word2time(word2time_file),
|
353 |
"answer_spans": parse_qa_answer_spans(row.get("answer_spans", "[]")),
|
354 |
}
|
355 |
+
elif self.config.name == "slue_nel":
|
356 |
+
split = "test" if "test" in filepath else "dev"
|
357 |
+
utt_id = row["id"]
|
358 |
+
word_alignments_fn = os.path.join(
|
359 |
+
data_dir, "word_timestamps", split, f"{utt_id}.json"
|
360 |
+
)
|
361 |
+
audio_file = os.path.join(
|
362 |
+
data_dir,
|
363 |
+
split,
|
364 |
+
f"{utt_id}.ogg",
|
365 |
+
)
|
366 |
+
example = {
|
367 |
+
"id": utt_id,
|
368 |
+
"audio": audio_file,
|
369 |
+
"speaker_id": row["speaker_id"],
|
370 |
+
"text": row["normalized_text"],
|
371 |
+
"ne_timestamps": parse_nel_time_spans(
|
372 |
+
row.get("normalized_nel", "[]")
|
373 |
+
),
|
374 |
+
"word_timestamps": read_word_timestamps(word_alignments_fn),
|
375 |
+
}
|
376 |
yield idx, example
|