File size: 8,992 Bytes
54f280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b11b1
54f280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import json
import os
import tarfile
import zipfile
import gzip
import subprocess
from os.path import join as p_join
from math import ceil, floor
from tqdm import tqdm
from multiprocessing import Pool
from typing import Optional, Dict
from glob import glob
# import librosa

import pandas as pd
import soundfile as sf
from datasets import Dataset, Audio, DatasetDict

audio_loader = Audio()
# dataset config
url_metadata_dict = {
    "enA-jaA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz",
    "enA-zhA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-zhA.tsv.gz",
    "enA-viA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-viA.tsv.gz",
}
direction = os.getenv("DIRECTION", "enA-jaA")
if direction not in url_metadata_dict:
    a, b = direction.split("-")
    url_metadata_dict[direction] = f"https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.{a}-{b}.tsv.gz"
sides = set(direction.split("-"))
cache_dir_audio = p_join("download", "audio", direction)
cache_dir_feature = p_join("download", "feature", direction)
os.makedirs(cache_dir_feature, exist_ok=True)
for s in sides:
    os.makedirs(p_join(cache_dir_audio, s), exist_ok=True)
# processor config
n_pool = int(os.getenv("N_POOL", 1))
wget_max_retry = os.getenv("MAX_RETRY", "2")
wget_timeout = os.getenv("TIMEOUT", "20")
line_no_start = int(os.getenv("LINE_NO_START", 0))
line_no_end = int(os.getenv("LINE_NO_END", 10000))
dataset_id = os.getenv("DATASET_ID", 0)
hf_org = os.getenv("HF_ORG", "asahi417")
hf_dataset = os.getenv("HF_DATASET", f"seamless-align-{direction}")
skip_download = bool(int(os.getenv("SKIP_DOWNLOAD", 0)))
sampling_rate = 16000  # seamless-align aligns audio in 16kHz


def wget(url: str, output_file: Optional[str] = None):
    os.makedirs(os.path.dirname(output_file), exist_ok=True)
    subprocess.run(["wget", url, "-O", output_file, "--tries", wget_max_retry, "--timeout", wget_timeout])
    if not os.path.exists(output_file):
        return False
    if output_file.endswith('.tar.gz') or output_file.endswith('.tgz') or output_file.endswith('.tar'):
        if output_file.endswith('.tar'):
            tar = tarfile.open(output_file)
        else:
            tar = tarfile.open(output_file, "r:gz")
        tar.extractall(os.path.dirname(output_file))
        tar.close()
        os.remove(output_file)
    elif output_file.endswith('.gz'):
        with gzip.open(output_file, 'rb') as f:
            with open(output_file.replace('.gz', ''), 'wb') as f_write:
                f_write.write(f.read())
        os.remove(output_file)
    elif output_file.endswith('.zip'):
        with zipfile.ZipFile(output_file, 'r') as zip_ref:
            zip_ref.extractall()
        os.remove(output_file)
    return True


def get_metadata():
    url_metadata = url_metadata_dict[direction]
    meta_data_filename = os.path.basename(url_metadata)
    meta_data_path = p_join("download", "meta", meta_data_filename)
    if not os.path.exists(meta_data_path.replace(".gz", "")):
        assert wget(url_metadata, output_file=meta_data_path)
    df = pd.read_csv(meta_data_path.replace(".gz", ""), sep=r'[\t\s]', header=None)
    df = df[[0, 2, 3, 4, 9, 10, 11, 12]]
    df.columns = ["id", "url", "duration_start", "duration_end", "laser_score", "direction", "side", "line_no"]
    if direction == "enA-jpn":
        df = df[df["side"] == "enA"]
    assert len(df["direction"].unique()) == 1
    df.pop("direction")
    return df.sort_values(by=["line_no", "side"])


def to_json_serializable(val):
    if "float" in str(type(val)):
        return float(val)
    if "int" in str(type(val)):
        return int(val)
    return str(val)


def cleanup(features, feature_file):
    if os.path.exists(feature_file):
        os.remove(feature_file)
    for _side in sides:
        for _unrelated_audio_file in glob(p_join(cache_dir_audio, _side, f"{features['line_no']}.*")):
            os.remove(_unrelated_audio_file)
    # create a dummy so that we can skip from next run
    with open(feature_file, "w") as f:
        json.dump({"dummy": "dummy"}, f)


def get_audio(dataframe: pd.DataFrame):
    features = {"line_no": int(dataframe.pop('line_no').values[0])}
    feature_file = p_join(cache_dir_feature, f'{features["line_no"]}.json')
    for side, df in dataframe.groupby("side"):
        df.pop("side")
        features.update({f"{side}.{k}": to_json_serializable(v) for k, v in df.iloc[0].to_dict().items()})
        identifier = os.path.basename(features[f"{side}.url"]).split(".")[-1]
        features[f"{side}.path"] = str(p_join(cache_dir_audio, side, f"{features['line_no']}.{identifier}"))
        start, end = features[f"{side}.duration_start"], features[f"{side}.duration_end"]
        if not os.path.exists(features[f"{side}.path"]):
            print(f"WGET {features[f'{side}.url']}")
            flag = wget(features[f"{side}.url"], output_file=features[f"{side}.path"])
            if not flag:
                print("\n#### ERROR: wget failure ####\n")
                cleanup(features, feature_file)
                return None
            else:
                try:
                    print(f"LOAD AUDIO FROM {features[f'{side}.path']}")
                    wav, sr = sf.read(features[f"{side}.path"])
                    print(f"wav shape:{wav.shape}")
                    if wav.ndim > 1:
                        wav = wav[:, 0]
                    wav = wav[floor(start / sampling_rate * sr):ceil(end / sampling_rate * sr)]
                    print(f"wav shape (after truncate):{wav.shape}")
                    wav = wav[:int(end/sampling_rate * sr) + sr]
                    print(f"SAVING: {features[f'{side}.path']}")
                    sf.write(features[f"{side}.path"], wav, sr)
                    # if sr != sampling_rate:
                    #     print(f"RESAMPLING: {wav.shape} length audio")
                    #     wav = librosa.resample(wav, orig_sr=sr, target_sr=sampling_rate)
                    # sf.write(features[f"{side}.path"], wav[start:end], sampling_rate)

                except Exception as e:
                    print(f"\n#### ERROR ####\n {e}")
                    cleanup(features, feature_file)
                    return None
    print(f"\n### SUCCESS! ###\n:{features['line_no']}")
    with open(feature_file, "w") as f:
        json.dump(features, f)
    return features["line_no"]


def loader(feature: str) -> Dict:
    with open(feature) as f_reader:
        return json.load(f_reader)


if __name__ == '__main__':
    if not skip_download:
        df_metadata = get_metadata()
        print(f"metadata: {len(df_metadata)}, {line_no_start} --> {line_no_end}")
        inputs = [
            g for line_no, g in df_metadata.groupby("line_no")
            if line_no_start <= line_no < line_no_end and not os.path.exists(
                p_join(cache_dir_feature, f'{int(line_no)}.json')
            )
        ]
        print(f"filtered unique lines: {len(inputs)}")
        inputs = [g for g in inputs if len(g["side"].unique()) == 2 and set(g["side"].unique()) == sides]
        print(f"removed side != 2: {len(inputs)}")

        if n_pool == 1:
            for g in tqdm(inputs, total=len(inputs)):
                line_no = get_audio(g)
        else:
            with Pool(n_pool) as pool:
                for line_no in pool.imap_unordered(get_audio, inputs):
                    if line_no:
                        print(line_no)

    print("UPLOADING TO HF!!!")
    features = [p_join(cache_dir_feature, f'{i}.json') for i in range(line_no_start, line_no_end)]
    print(f"- raw feature: {len(features)}")
    features = [i for i in features if os.path.exists(i)]
    print(f"- path exists: {len(features)}")
    features = [loader(i) for i in features]
    features = [i for i in features if "dummy" not in i]
    print(f"- dummy removed: {len(features)}")
    print(f"push {len(features)} records to hub")
    data_dict = {}
    for side in sides:
        data_dict.update({f"{side}.audio": [i.pop(f"{side}.path") for i in features]})
    data_dict.update({k: [i[k] for i in features] for k in features[0].keys()})
    audio_dataset = Dataset.from_dict(data_dict)
    for side in sides:
        audio_dataset = audio_dataset.cast_column(f"{side}.audio", Audio())
    DatasetDict({"train": audio_dataset}).push_to_hub(
        f"{hf_org}/{hf_dataset}",
        config_name=f"subset_{dataset_id}"
    )
    print("clear the workspace")
    for i in tqdm(range(line_no_start, line_no_end), total=line_no_end - line_no_start):
        for audio_file in glob(p_join(cache_dir_audio, "*", f"{i}.*")):
            os.remove(audio_file)
        if os.path.exists(p_join(cache_dir_feature, f"{i}.json")):
            os.remove(p_join(cache_dir_feature, f"{i}.json"))