File size: 9,460 Bytes
f4b03a9
0021056
6ed1c54
 
 
7210459
0021056
2dae5d5
0021056
6ed1c54
3524295
 
3b95e3a
6ed1c54
 
3524295
 
28ad598
3524295
f4b03a9
 
 
 
 
 
 
cc01e7a
 
 
af5bf83
 
f4b03a9
3f25a55
981a6f2
 
f4b03a9
ab289ef
4d206b1
2c3b1f3
3524295
981a6f2
 
3524295
6ed1c54
cc01e7a
 
f0dde66
7210459
6ed1c54
 
 
 
 
 
84f9b19
6ed1c54
 
 
 
 
 
 
 
 
cc01e7a
6ed1c54
 
0021056
 
f4b03a9
 
d9a6351
cc01e7a
6697bc7
cc01e7a
cccf8d7
 
 
 
 
f4b03a9
 
fb589be
0021056
 
6171564
 
 
 
 
 
 
 
4317bcb
 
 
 
00a3768
 
4317bcb
 
eabf3d6
4317bcb
 
f4b03a9
a5f8ab8
6171564
596ecab
f4b03a9
 
6171564
4fefb4c
 
3524295
f4b03a9
43f66af
4fefb4c
 
5df4440
4317bcb
3f25a55
3524295
 
43f66af
70e3538
e220bc4
70e3538
 
acf74b4
2dae5d5
3b95e3a
 
 
2dae5d5
 
3b95e3a
 
 
3524295
5df4440
4317bcb
3f25a55
4317bcb
596ecab
f4b03a9
3f25a55
0021056
 
16749e8
981a6f2
af7193a
 
d0d5d11
 
 
 
 
 
af7193a
 
 
 
 
a321b09
 
 
 
 
 
 
 
0021056
3524295
 
 
 
16749e8
4317bcb
 
 
 
 
 
 
 
3524295
 
 
 
 
 
 
 
5b6fcfd
af7193a
 
 
 
5b6fcfd
 
 
 
 
 
af7193a
 
5b6fcfd
 
 
 
af7193a
 
 
 
 
 
 
 
 
 
 
a219aaf
 
 
 
 
 
 
3524295
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import json
import os
import tarfile
import zipfile
import gzip
import subprocess
from os.path import join as p_join
from math import ceil, floor
from tqdm import tqdm
from multiprocessing import Pool
from typing import Optional, Dict
from glob import glob
# import librosa

import pandas as pd
import soundfile as sf
from datasets import Dataset, Audio, DatasetDict

audio_loader = Audio()
# dataset config
url_metadata_dict = {
    "enA-jaA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz",
    "enA-jpn": "https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz"
}
direction = os.getenv("DIRECTION", "enA-jaA")
sides = set(direction.split("-"))
cache_dir_audio = p_join("download", "audio", direction)
cache_dir_feature = p_join("download", "feature", direction)
os.makedirs(cache_dir_feature, exist_ok=True)
for s in sides:
    os.makedirs(p_join(cache_dir_audio, s), exist_ok=True)
# processor config
n_pool = int(os.getenv("N_POOL", 1))
wget_max_retry = os.getenv("MAX_RETRY", "2")
wget_timeout = os.getenv("TIMEOUT", "20")
line_no_start = int(os.getenv("LINE_NO_START", 0))
line_no_end = int(os.getenv("LINE_NO_END", 10000))
dataset_id = os.getenv("DATASET_ID", 0)
hf_org = os.getenv("HF_ORG", "asahi417")
hf_dataset = f"seamless-align-{direction}"
skip_download = bool(int(os.getenv("SKIP_DOWNLOAD", 0)))
sampling_rate = 16000  # seamless-align aligns audio in 16kHz


def wget(url: str, output_file: Optional[str] = None):
    os.makedirs(os.path.dirname(output_file), exist_ok=True)
    subprocess.run(["wget", url, "-O", output_file, "--tries", wget_max_retry, "--timeout", wget_timeout])
    if not os.path.exists(output_file):
        return False
    if output_file.endswith('.tar.gz') or output_file.endswith('.tgz') or output_file.endswith('.tar'):
        if output_file.endswith('.tar'):
            tar = tarfile.open(output_file)
        else:
            tar = tarfile.open(output_file, "r:gz")
        tar.extractall(os.path.dirname(output_file))
        tar.close()
        os.remove(output_file)
    elif output_file.endswith('.gz'):
        with gzip.open(output_file, 'rb') as f:
            with open(output_file.replace('.gz', ''), 'wb') as f_write:
                f_write.write(f.read())
        os.remove(output_file)
    elif output_file.endswith('.zip'):
        with zipfile.ZipFile(output_file, 'r') as zip_ref:
            zip_ref.extractall()
        os.remove(output_file)
    return True


def get_metadata():
    url_metadata = url_metadata_dict[direction]
    meta_data_filename = os.path.basename(url_metadata)
    meta_data_path = p_join("download", "meta", meta_data_filename)
    if not os.path.exists(meta_data_path.replace(".gz", "")):
        assert wget(url_metadata, output_file=meta_data_path)
    df = pd.read_csv(meta_data_path.replace(".gz", ""), sep=r'[\t\s]', header=None)
    df = df[[0, 2, 3, 4, 9, 10, 11, 12]]
    df.columns = ["id", "url", "duration_start", "duration_end", "laser_score", "direction", "side", "line_no"]
    if direction == "enA-jpn":
        df = df[df["side"] == "enA"]
    assert len(df["direction"].unique()) == 1
    df.pop("direction")
    return df.sort_values(by=["line_no", "side"])


def to_json_serializable(val):
    if "float" in str(type(val)):
        return float(val)
    if "int" in str(type(val)):
        return int(val)
    return str(val)


def cleanup(features, feature_file):
    if os.path.exists(feature_file):
        os.remove(feature_file)
    for _side in sides:
        for _unrelated_audio_file in glob(p_join(cache_dir_audio, _side, f"{features['line_no']}.*")):
            os.remove(_unrelated_audio_file)
    # create a dummy so that we can skip from next run
    with open(feature_file, "w") as f:
        json.dump({"dummy": "dummy"}, f)


def get_audio(dataframe: pd.DataFrame):
    resampler = {}
    features = {"line_no": int(dataframe.pop('line_no').values[0])}
    feature_file = p_join(cache_dir_feature, f'{features["line_no"]}.json')
    for side, df in dataframe.groupby("side"):
        df.pop("side")
        features.update({f"{side}.{k}": to_json_serializable(v) for k, v in df.iloc[0].to_dict().items()})
        identifier = os.path.basename(features[f"{side}.url"]).split(".")[-1]
        features[f"{side}.path"] = str(p_join(cache_dir_audio, side, f"{features['line_no']}.{identifier}"))
        start, end = features[f"{side}.duration_start"], features[f"{side}.duration_end"]
        if not os.path.exists(features[f"{side}.path"]):
            print(f"WGET {features[f'{side}.url']}")
            flag = wget(features[f"{side}.url"], output_file=features[f"{side}.path"])
            if not flag:
                print("\n#### ERROR: wget failure ####\n")
                cleanup(features, feature_file)
                return None
            else:
                try:
                    print(f"LOAD AUDIO FROM {features[f'{side}.path']}")
                    wav, sr = sf.read(features[f"{side}.path"])
                    print(f"wav shape:{wav.shape}")
                    if wav.ndim > 1:
                        wav = wav[:, 0]
                    wav = wav[floor(start / sampling_rate * sr):ceil(end / sampling_rate * sr)]
                    print(f"wav shape (after truncate):{wav.shape}")
                    wav = wav[:int(end/sampling_rate * sr) + sr]
                    print(f"SAVING: {features[f'{side}.path']}")
                    sf.write(features[f"{side}.path"], wav, sr)
                    # if sr != sampling_rate:
                    #     print(f"RESAMPLING: {wav.shape} length audio")
                    #     wav = librosa.resample(wav, orig_sr=sr, target_sr=sampling_rate)
                    # sf.write(features[f"{side}.path"], wav[start:end], sampling_rate)

                except Exception as e:
                    print(f"\n#### ERROR ####\n {e}")
                    cleanup(features, feature_file)
                    return None
    print(f"\n### SUCCESS! ###\n:{features['line_no']}")
    with open(feature_file, "w") as f:
        json.dump(features, f)
    return features["line_no"]


if __name__ == '__main__':
    if not skip_download:
        df_metadata = get_metadata()
        print(f"metadata: {len(df_metadata)}, {line_no_start} --> {line_no_end}")
        inputs = [
            g for line_no, g in df_metadata.groupby("line_no")
            if line_no_start <= line_no < line_no_end and not os.path.exists(
                p_join(cache_dir_feature, f'{int(line_no)}.json')
            )
        ]
        print(f"filtered unique lines: {len(inputs)}")
        if direction == "enA-jaA":
            inputs = [g for g in inputs if len(g["side"].unique()) == 2 and set(g["side"].unique()) == sides]
            print(f"removed side != 2: {len(inputs)}")

        if n_pool == 1:
            for g in tqdm(inputs, total=len(inputs)):
                line_no = get_audio(g)
        else:
            with Pool(n_pool) as pool:
                for line_no in pool.imap_unordered(get_audio, inputs):
                    if line_no:
                        print(line_no)

    def loader(feature: str) -> Dict:
        with open(feature) as f_reader:
            return json.load(f_reader)


    print("UPLOADING TO HF!!!")
    features = [p_join(cache_dir_feature, f'{i}.json') for i in range(line_no_start, line_no_end)]
    print(f"- raw feature: {len(features)}")
    features = [i for i in features if os.path.exists(i)]
    print(f"- path exists: {len(features)}")
    features = [loader(i) for i in features]
    features = [i for i in features if "dummy" not in i]
    print(f"- dummy removed: {len(features)}")
    print(f"push {len(features)} records to hub")
    data_dict = {}
    for side in sides:
        data_dict.update({f"{side}.audio": [i.pop(f"{side}.path") for i in features]})
    data_dict.update({k: [i[k] for i in features] for k in features[0].keys()})
    audio_dataset = Dataset.from_dict(data_dict)
    for side in sides:
        audio_dataset = audio_dataset.cast_column(f"{side}.audio", Audio())
    DatasetDict({"train": audio_dataset}).push_to_hub(
        f"{hf_org}/{hf_dataset}",
        config_name=f"subset_{dataset_id}"
    )


    # DatasetDict({"train": audio_dataset.select(list(range(1000)))}).push_to_hub(
    #     f"{hf_org}/{hf_dataset}",
    #     config_name=f"subset_{dataset_id}"
    # )

    # # 2 panel
    # dataset_id = 75
    # DatasetDict({"train": audio_dataset.select(list(range(3000, len(audio_dataset))))}).push_to_hub(
    #     f"{hf_org}/{hf_dataset}",
    #     config_name=f"subset_{dataset_id}"
    # )
    #
    #


    # audio_dataset = audio_dataset.select(list(range(2500)))
    # dataset_to_push = DatasetDict({"train": audio_dataset})
    # repo_name = f"{hf_org}/{hf_dataset}"
    # dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}")
    # dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}", max_shard_size="2GiB")
    # dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}", num_shards={"train": 1})

    # while True:
    #     try:
    #         dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}")
    #         break
    #     except Exception:
    #         print(f"FAILED: push_to_hub on {repo_name} failed. wait 60 sec and retry soon...")
    #         time.sleep(60)