File size: 3,305 Bytes
7511825
 
 
 
 
 
 
 
 
 
 
 
 
 
ed540d3
7511825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f1c86
7511825
31f1c86
 
7511825
31f1c86
 
7511825
31f1c86
 
7511825
 
 
 
 
 
 
 
 
 
 
 
 
ed540d3
7511825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

from datasets import load_dataset
from pathlib import Path
import pandas as pd
import os
import pickle
import logging
import time
import evaluate
import nltk

CURRENT_PATH = Path(__file__).parent

logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(levelname)s %(message)s', datefmt='%H:%M:%S', filename=os.path.join(CURRENT_PATH, 'out', 'debug_ngrams.txt'), filemode='w')

nltk.download("stopwords")
nltk.download("punkt")


def tokenizer(text):
    return nltk.tokenize.word_tokenize(text, language="portuguese")


def load_pipelines():
    in_path = os.path.join(CURRENT_PATH, 'models', 'n_grams')

    pipeline = []

    for domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:
        with open(os.path.join(in_path, f'{domain}.pickle'), 'rb') as f:
            logging.info(f"Loading {domain} pipeline...")
            pipeline.append({
                'pipeline': pickle.load(f),
                'train_domain': domain,
            })

    return pipeline


def benchmark(pipeline, debug=False):

    df_results = pd.DataFrame(
        columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])

    train_domain = pipeline['train_domain']

    pipeline = pipeline['pipeline']

    for test_domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:

        logging.info(f"Test Domain {test_domain}...")

        dataset = load_dataset(
            'arubenruben/Portuguese_Language_Identification', test_domain, split='test')

        if debug:
            logging.info("Debug mode: using only 100 samples")
            dataset = dataset.shuffle().select(range(100))
        else:
            dataset = dataset.shuffle().select(range(min(50_000, len(dataset))))

        y = pipeline.predict(dataset['text'])

        accuracy = evaluate.load('accuracy').compute(
            predictions=y, references=dataset['label'])['accuracy']
        
        f1 = evaluate.load('f1').compute(
            predictions=y, references=dataset['label'])['f1']
        
        precision = evaluate.load('precision').compute(
            predictions=y, references=dataset['label'])['precision']
        
        recall = evaluate.load('recall').compute(
            predictions=y, references=dataset['label'])['recall']

        logging.info(
            f"Accuracy: {accuracy} | F1: {f1} | Precision: {precision} | Recall: {recall}")

        df_results = pd.concat([df_results, pd.DataFrame(
            [[train_domain, test_domain, accuracy, f1, precision, recall]], columns=df_results.columns)], ignore_index=True)

    return df_results


def test():

    DEBUG = False

    logging.info(f"Debug mode: {DEBUG}")

    pipelines = load_pipelines()
    df_results = pd.DataFrame(
        columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])

    for pipeline in pipelines:
        logging.info(f"Train Domain {pipeline['train_domain']}...")

        df_results = pd.concat(
            [df_results, benchmark(pipeline, debug=True)], ignore_index=True)

        logging.info("Saving results...")

        df_results.to_json(os.path.join(CURRENT_PATH, 'out', 'n_grams.json'),
                           orient='records', indent=4, force_ascii=False)


if __name__ == "__main__":
    test()