File size: 7,468 Bytes
5e09c9c
b9d9025
 
146b5ae
9a7ab39
b9d9025
 
 
 
 
 
4dcfae1
b9d9025
 
 
 
 
 
 
 
 
5e09c9c
 
 
 
 
 
 
afad9ea
5e09c9c
 
 
 
afad9ea
5e09c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f0736
5e09c9c
b9d9025
 
 
5e09c9c
 
 
 
 
62f0736
5e09c9c
 
 
 
 
b9d9025
 
 
5e09c9c
afad9ea
5e09c9c
 
 
62f0736
5e09c9c
 
 
62f0736
5e09c9c
62f0736
5e09c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f0736
5e09c9c
 
 
 
 
 
 
 
 
 
 
 
 
afad9ea
5e09c9c
 
 
 
 
 
62f0736
5e09c9c
62f0736
5e09c9c
 
 
62f0736
5e09c9c
afad9ea
 
 
 
 
 
5e09c9c
 
62f0736
5e09c9c
afad9ea
 
 
 
 
 
5e09c9c
 
62f0736
5e09c9c
 
 
62f0736
5e09c9c
62f0736
5e09c9c
 
 
62f0736
5e09c9c
 
 
62f0736
5e09c9c
 
 
62f0736
5e09c9c
62f0736
5e09c9c
 
 
62f0736
5e09c9c
 
 
62f0736
5e09c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dcfae1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
annotations_creators:
- found
language:
- en
language_creators:
- found
license:
- unknown
multilinguality:
- monolingual
pretty_name: ScientificPapers
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- summarization
task_ids:
- summarization-other-abstractive-summarization
paperswithcode_id: null
---

# Dataset Card for "scientific_papers"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:** https://github.com/armancohan/long-summarization
- **Paper:** [A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents](https://arxiv.org/abs/1804.05685)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 8591.93 MB
- **Size of the generated dataset:** 9622.19 MB
- **Total amount of disk used:** 18214.12 MB

### Dataset Summary

Scientific papers datasets contains two sets of long and structured documents.
The datasets are obtained from ArXiv and PubMed OpenAccess repositories.

Both "arxiv" and "pubmed" have two features:
  - article: the body of the document, paragraphs separated by "/n".
  - abstract: the abstract of the document, paragraphs separated by "/n".
  - section_names: titles of sections, separated by "/n".

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### arxiv

- **Size of downloaded dataset files:** 4295.97 MB
- **Size of the generated dataset:** 7231.70 MB
- **Total amount of disk used:** 11527.66 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "abstract": "\" we have studied the leptonic decay @xmath0 , via the decay channel @xmath1 , using a sample of tagged @xmath2 decays collected...",
    "article": "\"the leptonic decays of a charged pseudoscalar meson @xmath7 are processes of the type @xmath8 , where @xmath9 , @xmath10 , or @...",
    "section_names": "[sec:introduction]introduction\n[sec:detector]data and the cleo- detector\n[sec:analysys]analysis method\n[sec:conclusion]summary"
}
```

#### pubmed

- **Size of downloaded dataset files:** 4295.97 MB
- **Size of the generated dataset:** 2390.49 MB
- **Total amount of disk used:** 6686.46 MB

An example of 'validation' looks as follows.
```
This example was too long and was cropped:

{
    "abstract": "\" background and aim : there is lack of substantial indian data on venous thromboembolism ( vte ) . \\n the aim of this study was...",
    "article": "\"approximately , one - third of patients with symptomatic vte manifests pe , whereas two - thirds manifest dvt alone .\\nboth dvt...",
    "section_names": "\"Introduction\\nSubjects and Methods\\nResults\\nDemographics and characteristics of venous thromboembolism patients\\nRisk factors ..."
}
```

### Data Fields

The data fields are the same among all splits.

#### arxiv
- `article`: a `string` feature.
- `abstract`: a `string` feature.
- `section_names`: a `string` feature.

#### pubmed
- `article`: a `string` feature.
- `abstract`: a `string` feature.
- `section_names`: a `string` feature.

### Data Splits

| name |train |validation|test|
|------|-----:|---------:|---:|
|arxiv |203037|      6436|6440|
|pubmed|119924|      6633|6658|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@article{Cohan_2018,
   title={A Discourse-Aware Attention Model for Abstractive Summarization of
            Long Documents},
   url={http://dx.doi.org/10.18653/v1/n18-2097},
   DOI={10.18653/v1/n18-2097},
   journal={Proceedings of the 2018 Conference of the North American Chapter of
          the Association for Computational Linguistics: Human Language
          Technologies, Volume 2 (Short Papers)},
   publisher={Association for Computational Linguistics},
   author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli},
   year={2018}
}
```

### Contributions

Thanks to [@thomwolf](https://github.com/thomwolf), [@jplu](https://github.com/jplu), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.