Datasets:
File size: 5,413 Bytes
458be61 0c23eb1 458be61 0c23eb1 458be61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Scientific Papers Dataset."""
from __future__ import absolute_import, division, print_function
import json
import os
import datasets
_CITATION = """
@article{Cohan_2018,
title={A Discourse-Aware Attention Model for Abstractive Summarization of
Long Documents},
url={http://dx.doi.org/10.18653/v1/n18-2097},
DOI={10.18653/v1/n18-2097},
journal={Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers)},
publisher={Association for Computational Linguistics},
author={Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli},
year={2018}
}
"""
_DESCRIPTION = """
Scientific papers datasets contains two sets of long and structured documents.
The datasets are obtained from ArXiv and PubMed OpenAccess repositories.
Both "arxiv" and "pubmed" have two features:
- article: the body of the document, pagragraphs seperated by "/n".
- abstract: the abstract of the document, pagragraphs seperated by "/n".
- section_names: titles of sections, seperated by "/n".
"""
_DOCUMENT = "article"
_SUMMARY = "abstract"
_URLS = {
"arxiv": "https://s3.amazonaws.com/datasets.huggingface.co/scientific_papers/1.1.1/arxiv-dataset.zip",
"pubmed": "https://s3.amazonaws.com/datasets.huggingface.co/scientific_papers/1.1.1/pubmed-dataset.zip",
}
class ScientificPapersConfig(datasets.BuilderConfig):
"""BuilderConfig for Scientific Papers."""
def __init__(self, filename=None, **kwargs):
"""BuilderConfig for ScientificPapers
Args:
filename: filename of different configs for the dataset.
**kwargs: keyword arguments forwarded to super.
"""
# 1.1.0 remove sentence breaker <S> and </S> in summary.
super(ScientificPapersConfig, self).__init__(version=datasets.Version("1.1.1"), **kwargs)
self.filename = filename
class ScientificPapers(datasets.GeneratorBasedBuilder):
"""Scientific Papers."""
BUILDER_CONFIGS = [
ScientificPapersConfig(name="pubmed", description="Documents from PubMed repository."),
ScientificPapersConfig(name="arxiv", description="Documents from ArXiv repository."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
_DOCUMENT: datasets.Value("string"),
_SUMMARY: datasets.Value("string"),
"section_names": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/armancohan/long-summarization",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_paths = dl_manager.download_and_extract(_URLS)
path = os.path.join(dl_paths[self.config.name], self.config.name + "-dataset")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"path": os.path.join(path, "train.txt")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"path": os.path.join(path, "val.txt")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"path": os.path.join(path, "test.txt")},
),
]
def _generate_examples(self, path=None):
"""Yields examples."""
with open(path, encoding="utf-8") as f:
for line in f:
# Possible keys are:
# "article_id": str
# "article_text": list[str] article (list of paragraphs).
# "abstract_text": list[str], abstract (list of paragraphs).
# "section_names": list[str], list of section names.
# "sections": list[list[str]], list of sections (list of paragraphs)
d = json.loads(line)
summary = "\n".join(d["abstract_text"])
# In original paper, <S> and </S> are not used in vocab during training
# or during decoding.
# https://github.com/armancohan/long-summarization/blob/master/data.py#L27
summary = summary.replace("<S>", "").replace("</S>", "")
yield d["article_id"], {
_DOCUMENT: "\n".join(d["article_text"]),
_SUMMARY: summary,
"section_names": "\n".join(d["section_names"]),
}
|