File size: 1,437 Bytes
db09549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from datasets import Dataset
from sklearn.metrics import f1_score
def copa_doc_to_text(doc: dict) -> str:
connector = {"์์ธ": " ์๋ํ๋ฉด", "๊ฒฐ๊ณผ": " ๊ทธ๋์"}[doc["question"].strip()]
return f"""{doc["premise"]} {connector}"""
def copa_doc_to_target(doc: dict) -> str:
correct_choice = doc["alternative_1"] if doc["label"] == 0 else doc["alternative_2"]
return f"""{correct_choice}"""
def copa_doc_to_choice(doc: dict) -> list:
return [f"""{doc["alternative_1"]}""", f"""{doc["alternative_2"]}"""]
def sentineg_doc_to_text(doc: dict):
return f"""๋ฌธ์ฅ: {doc["sentence"]} ๊ธ๋ถ์ :"""
def wic_doc_to_text(doc: dict) -> str:
return f"""๋ฌธ์ฅ1: {doc["context_1"]} ๋ฌธ์ฅ2: {doc["context_2"]} ๋ ๋ฌธ์ฅ์์ {doc["word"]}๊ฐ ๊ฐ์ ๋ป์ผ๋ก ์ฐ์๋?"""
def hellaswag_process_doc(doc: Dataset) -> Dataset:
def preprocessor(dataset):
return {
"query": f"""๋ฌธ์ฅ: {dataset["context"]}""",
"choices": [
dataset["ending_1"],
dataset["ending_2"],
dataset["ending_3"],
dataset["ending_4"],
],
"gold": int(dataset["label"]),
}
return doc.map(preprocessor)
def macro_f1_score(items):
unzipped_list = list(zip(*items))
golds = unzipped_list[0]
preds = unzipped_list[1]
fscore = f1_score(golds, preds, average="macro")
return fscore
|