File size: 1,437 Bytes
db09549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from datasets import Dataset
from sklearn.metrics import f1_score


def copa_doc_to_text(doc: dict) -> str:
    connector = {"์›์ธ": " ์™œ๋ƒํ•˜๋ฉด", "๊ฒฐ๊ณผ": " ๊ทธ๋ž˜์„œ"}[doc["question"].strip()]
    return f"""{doc["premise"]} {connector}"""


def copa_doc_to_target(doc: dict) -> str:
    correct_choice = doc["alternative_1"] if doc["label"] == 0 else doc["alternative_2"]
    return f"""{correct_choice}"""


def copa_doc_to_choice(doc: dict) -> list:
    return [f"""{doc["alternative_1"]}""", f"""{doc["alternative_2"]}"""]


def sentineg_doc_to_text(doc: dict):
    return f"""๋ฌธ์žฅ: {doc["sentence"]} ๊ธ๋ถ€์ •:"""


def wic_doc_to_text(doc: dict) -> str:
    return f"""๋ฌธ์žฅ1: {doc["context_1"]} ๋ฌธ์žฅ2: {doc["context_2"]} ๋‘ ๋ฌธ์žฅ์—์„œ {doc["word"]}๊ฐ€ ๊ฐ™์€ ๋œป์œผ๋กœ ์“ฐ์˜€๋‚˜?"""


def hellaswag_process_doc(doc: Dataset) -> Dataset:
    def preprocessor(dataset):
        return {
            "query": f"""๋ฌธ์žฅ: {dataset["context"]}""",
            "choices": [
                dataset["ending_1"],
                dataset["ending_2"],
                dataset["ending_3"],
                dataset["ending_4"],
            ],
            "gold": int(dataset["label"]),
        }

    return doc.map(preprocessor)


def macro_f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="macro")
    return fscore