File size: 13,514 Bytes
fa550d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# -*- coding: utf-8 -*-
""".1294

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/18GMbHEjdUUsZiko73-qVxV-WVgsf5hgs
"""



import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import statsmodels.api as sm
import warnings

import warnings # Importing the warnings module
warnings.filterwarnings('ignore') # Calling the filterwarnings function

df = pd.read_csv("/content/shopping_trends (2).csv")

df.head()

df.sample(10)

df.info()

fig_age = px.histogram(
    df,
    x='Age',
    nbins= 50,
    title='Age Distribution of Customers',
    color_discrete_sequence=['cyan']
)

fig_age.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white')
)
fig_age.show()

gender_counts = df['Gender'].value_counts().reset_index()
gender_counts.columns = ['Gender', 'Count']

fig_gender = px.pie(
    gender_counts,
    names='Gender',
    values='Count',
    title='Gender Proportions of Customers',
    color_discrete_sequence=px.colors.sequential.RdBu
)
fig_gender.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white')
)
fig_gender.show()

location_counts = df['Location'].value_counts().reset_index()
location_counts.columns = ['Location', 'Count']

fig_location = px.bar(
    location_counts,
    x='Location',
    y='Count',
    text='Count',
    title='Customer Count by Location',
    color_discrete_sequence=['lime']
)
location_counts = df['Location'].value_counts().reset_index()
location_counts.columns = ['Location', 'Count']

fig_location = px.bar(
    location_counts,
    x='Location',
    y='Count',
    text='Count',
    title='Customer Count by Location',
    color_discrete_sequence=['lime']
)
fig_location.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title="Location",
    yaxis_title="Number of Customers"
)
fig_location.show()
fig_location = px.bar(
    location_counts,
    x='Location',
    y='Count',
    text='Count',
    title='Customer Count by Location',
    color_discrete_sequence=['lime']
)
fig_location.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title="Location",
    yaxis_title="Number of Customers"
)
fig_location.show()

item_counts = df['Item Purchased'].value_counts().reset_index()
item_counts.columns = ['Item Purchased', 'Count']

fig_items = px.bar(
    item_counts,
    x='Item Purchased',
    y='Count',
    text='Count',
    title='Most Purchased Items',
    color_discrete_sequence=['orange']
)
fig_items.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Items',
    yaxis_title='Count of Purchases'
)
fig_items.show()

fig_amount = px.box(
    df,
    y='Purchase Amount (USD)', # Changed from 'Purchased Amount (USD)'
    title='Purchase Amount Distribution',
    color_discrete_sequence=['magenta']
)

fig_amount.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    yaxis_title='Purchase Amount (USD)'
)
fig_amount.show()

# Count popular sizes
size_counts = df['Size'].value_counts().reset_index()
size_counts.columns = ['Size', 'Count']

fig_sizes = px.bar(
    size_counts,
    x='Size',
    y='Count',
    text='Count',
    title='Preferred Sizes',
    color_discrete_sequence=['green']
)
fig_sizes.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Size',
    yaxis_title='Count of Purchases'
)
fig_sizes.show()

# Count popular colors
color_counts = df['Color'].value_counts().reset_index()
color_counts.columns = ['Color', 'Count']

fig_colors = px.bar(
    color_counts,
    x='Color',
    y='Count',
    text='Count',
    title='Preferred Colors',
    color_discrete_sequence=['teal']
)
fig_colors.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Color',
    yaxis_title='Count of Purchases'
)
fig_colors.show()

# Seasonal Trends
season_counts = df['Season'].value_counts().reset_index()
season_counts.columns = ['Season', 'Count']

fig_season = px.bar(
    season_counts,
    x='Season',
    y='Count',
    text='Count',
    title='Seasonal Trends in Purchases',
    color_discrete_sequence=['blue']
)
fig_season.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Season',
    yaxis_title='Count of Purchases'
)
fig_season.show()

# Frequency of Purchases
frequency_counts = df['Frequency of Purchases'].value_counts().reset_index()
frequency_counts.columns = ['Frequency', 'Count']

fig_frequency = px.bar(
    frequency_counts,
    x='Frequency',
    y='Count',
    text='Count',
    title='Frequency of Purchases',
    color_discrete_sequence=['red']
)
fig_frequency.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Frequency',
    yaxis_title='Count of Purchases'
)
fig_frequency.show()

payment_counts = df['Payment Method'].value_counts().reset_index()
payment_counts.columns = ['Payment Method', 'Count']

fig_payment = px.pie(
    payment_counts,
    names='Payment Method',
    values='Count',
    title='Popular Payment Methods',
    color_discrete_sequence=px.colors.sequential.Plasma
)
fig_payment.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white')
)
fig_payment.show()

subscription_data = df.groupby('Subscription Status')['Purchase Amount (USD)'].sum().reset_index()

fig_subscription = px.bar(
    subscription_data,
    x='Subscription Status',
    y='Purchase Amount (USD)',
    text='Purchase Amount (USD)',
    title='Impact of Subscription on Purchases',
    color='Subscription Status',
    color_discrete_sequence=px.colors.sequential.Viridis
)
fig_subscription.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Subscription Status',
    yaxis_title='Total Purchase Amount (USD)'
)
fig_subscription.show()

discount_data = df['Discount Applied'].value_counts().reset_index()
discount_data.columns = ['Discount Applied', 'Count']

fig_discount = px.bar(
    discount_data,
    x='Discount Applied',
    y='Count',
    text='Count',
    title='Discount Usage Analysis',
    color='Discount Applied',
    color_discrete_sequence=px.colors.sequential.Cividis
)
fig_discount.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Discount Applied',
    yaxis_title='Number of Purchases'
)
fig_discount.show()

category_revenue = df.groupby('Category')['Purchase Amount (USD)'].sum().reset_index()

fig_category_revenue = px.treemap(
    category_revenue,
    path=['Category'],
    values='Purchase Amount (USD)',
    title='Category-Wise Revenue',
    color='Purchase Amount (USD)',
    color_continuous_scale=px.colors.sequential.Sunset
)
fig_category_revenue.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white')
)
fig_category_revenue.show()

fig_ratings = px.histogram(
    df,
    x='Review Rating',
    nbins=10,
    title='Distribution of Review Ratings',
    color_discrete_sequence=['#FFA07A']
)
fig_ratings.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Review Rating',
    yaxis_title='Count'
)
fig_ratings.show()

shipping_data = df.groupby('Shipping Type')['Purchase Amount (USD)'].sum().reset_index()

fig_shipping = px.bar(
    shipping_data,
    x='Shipping Type',
    y='Purchase Amount (USD)',
    text='Purchase Amount (USD)',
    title='Shipping Types and Revenue Impact',
    color='Shipping Type',
    color_discrete_sequence=px.colors.sequential.Teal
)
fig_shipping.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Shipping Type',
    yaxis_title='Total Revenue (USD)'
)
fig_shipping.show()

customer_revenue = df.groupby('Customer ID')['Purchase Amount (USD)'].sum().reset_index()
customer_revenue = customer_revenue.sort_values(by='Purchase Amount (USD)', ascending=False)
customer_revenue['Cumulative Percentage'] = customer_revenue['Purchase Amount (USD)'].cumsum() / customer_revenue['Purchase Amount (USD)'].sum() * 100

fig_pareto = px.bar(
    customer_revenue,
    x='Customer ID',
    y='Purchase Amount (USD)',
    text='Purchase Amount (USD)',
    title='High-Spending Customers - Pareto Chart',
    color_discrete_sequence=['#FF7F50']
)
fig_pareto.add_scatter(
    x=customer_revenue['Customer ID'],
    y=customer_revenue['Cumulative Percentage'],
    mode='lines+markers',
    name='Cumulative Percentage',
    line=dict(color='cyan')
)
fig_pareto.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Customer ID',
    yaxis_title='Purchase Amount (USD)',
    yaxis2=dict(title='Cumulative Percentage', overlaying='y', side='right')
)
fig_pareto.show()

clustering_data = df.groupby('Customer ID').agg({
    'Purchase Amount (USD)': 'sum',
    'Frequency of Purchases': 'count',
    'Category': 'nunique'
}).reset_index()
clustering_data.columns = ['Customer ID', 'Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']

# Standardize the data
scaler = StandardScaler()
clustering_data_scaled = scaler.fit_transform(clustering_data[['Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']])

# Apply K-means clustering
kmeans = KMeans(n_clusters=3, random_state=42)
clustering_data['Cluster'] = kmeans.fit_predict(clustering_data_scaled)

# Scatter plot
fig_clusters = px.scatter_3d(
    clustering_data,
    x='Total Purchase Amount',
    y='Purchase Frequency',
    z='Unique Categories',
    color='Cluster',
    title='Behavioral Clusters of Customers',
    symbol='Cluster',
    color_continuous_scale=px.colors.sequential.Viridis
)
fig_clusters.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    scene=dict(
        xaxis_title='Total Purchase Amount',
        yaxis_title='Purchase Frequency',
        zaxis_title='Unique Categories'
    )
)
fig_clusters.show()

fig_purchase_vs_rating = px.scatter(
    df,
    x='Purchase Amount (USD)',
    y='Review Rating',
    title='Purchase Amount vs. Review Rating',
    color='Review Rating',
    color_continuous_scale='Viridis'
)

# Add regression line
X = sm.add_constant(df['Purchase Amount (USD)'])  # Add constant for intercept
y = df['Review Rating']
model = sm.OLS(y, X).fit()
df['Regression Line'] = model.predict(X)

fig_purchase_vs_rating.add_scatter(
    x=df['Purchase Amount (USD)'],
    y=df['Regression Line'],
    mode='lines',
    name='Regression Line',
    line=dict(color='cyan')
)

fig_purchase_vs_rating.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Purchase Amount (USD)',
    yaxis_title='Review Rating'
)

fig_purchase_vs_rating.show()

fig_age_vs_spending = px.scatter(
    df,
    x='Age',
    y='Purchase Amount (USD)',
    title='Age vs. Spending Habits',
    color='Age',
    color_continuous_scale='Viridis'
)

fig_age_vs_spending.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Age',
    yaxis_title='Purchase Amount (USD)'
)

fig_age_vs_spending.show()

fig_category_vs_gender.update_layout(
    template='plotly_dark',  # Corrected the template name to 'plotly_dark'
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Product Category',
    yaxis_title='Count'
)
fig_category_vs_gender.show()

fig_discounts_vs_spending = px.box(
    df,
    x='Discount Applied',
    y='Purchase Amount (USD)',
    title='Effect of Discounts on Spending',
    color='Discount Applied',
    color_discrete_sequence=['#FF6347', '#20B2AA']
)

fig_discounts_vs_spending.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white'),
    xaxis_title='Discount Applied',
    yaxis_title='Purchase Amount (USD)'
)

fig_discounts_vs_spending.show()

fig_profitability_analysis = px.treemap(
    df,
    path=['Category', 'Size', 'Color'],  # Hierarchy: Category -> Size -> Color
    values='Purchase Amount (USD)',
    title='Profitability Analysis by Category, Size, and Color',
    color='Purchase Amount (USD)',  # Color by total purchase amount
    color_continuous_scale='Viridis'
)

fig_profitability_analysis.update_layout(
    template='plotly_dark',
    plot_bgcolor='black',
    paper_bgcolor='black',
    font=dict(color='white')
)

fig_profitability_analysis.show()