File size: 35,241 Bytes
3ea3e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
# Copyright 2023 Natural Synthetics Inc.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import math
import os
import traceback
from pathlib import Path
import time
import torch
import torch.utils.checkpoint
import torch.multiprocessing as mp
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL
from diffusers.optimization import get_scheduler
from diffusers import DDPMScheduler
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
import torch.nn.functional as F
import gc
from typing import Callable
from PIL import Image
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from hotshot_xl.models.unet import UNet3DConditionModel
from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline
from hotshot_xl.utils import get_crop_coordinates, res_to_aspect_map, scale_aspect_fill
from einops import rearrange
from torch.utils.data import Dataset, DataLoader
from datetime import timedelta
from accelerate.utils.dataclasses import InitProcessGroupKwargs
from diffusers.utils import is_wandb_available

if is_wandb_available():
    import wandb

logger = get_logger(__file__)


class HotshotXLDataset(Dataset):

    def __init__(self, directory: str, make_sample_fn: Callable):
        """

        Training data folder needs to look like:
        + training_samples
        --- + sample_001
        ------- + frame_0.jpg
        ------- + frame_1.jpg
        ------- + ...
        ------- + frame_n.jpg
        ------- + prompt.txt
        --- + sample_002
        ------- + frame_0.jpg
        ------- + frame_1.jpg
        ------- + ...
        ------- + frame_n.jpg
        ------- + prompt.txt

        Args:
            directory: base directory of the training samples
            make_sample_fn: a delegate call to load the images and prep the sample for batching
        """
        samples_dir = [os.path.join(directory, p) for p in os.listdir(directory)]
        samples_dir = [p for p in samples_dir if os.path.isdir(p)]
        samples = []

        for d in samples_dir:
            file_paths = [os.path.join(d, p) for p in os.listdir(d)]
            image_fps = [f for f in file_paths if os.path.splitext(f)[1] in {".png", ".jpg"}]
            with open(os.path.join(d, "prompt.txt")) as f:
                prompt = f.read().strip()

            samples.append({
                "image_fps": image_fps,
                "prompt": prompt
            })

        self.samples = samples
        self.length = len(samples)
        self.make_sample_fn = make_sample_fn

    def __len__(self):
        return self.length

    def __getitem__(self, index):
        return self.make_sample_fn(
            self.samples[index]
        )


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default="hotshotco/Hotshot-XL",
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--unet_resume_path",
        type=str,
        default=None,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )

    parser.add_argument(
        "--data_dir",
        type=str,
        required=True,
        help="Path to data to train.",
    )

    parser.add_argument(
        "--report_to",
        type=str,
        default="wandb",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )

    parser.add_argument("--run_validation_at_start", action="store_true")
    parser.add_argument("--max_vae_encode", type=int, default=None)
    parser.add_argument("--vae_b16", action="store_true")
    parser.add_argument("--disable_optimizer_restore", action="store_true")

    parser.add_argument(
        "--latent_nan_checking",
        action="store_true",
        help="Check if latents contain nans - important if vae is f16",
    )
    parser.add_argument(
        "--test_prompts",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--project_name",
        type=str,
        default="fine-tune-hotshot-xl",
        help="the name of the run",
    )
    parser.add_argument(
        "--run_name",
        type=str,
        default="run-01",
        help="the name of the run",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--noise_offset", type=float, default=0.05, help="The scale of noise offset.")
    parser.add_argument("--seed", type=int, default=111, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--aspect_ratio",
        type=str,
        default="1.75",
        choices=list(res_to_aspect_map[512].keys()),
        help="Aspect ratio to train at",
    )

    parser.add_argument("--xformers", action="store_true")

    parser.add_argument(
        "--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader."
    )

    parser.add_argument("--num_train_epochs", type=int, default=1)

    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=9999999,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )

    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )

    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )

    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")

    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )

    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )

    parser.add_argument(
        "--validate_every_steps",
        type=int,
        default=100,
        help="Run inference every",
    )

    parser.add_argument(
        "--save_n_steps",
        type=int,
        default=100,
        help="Save the model every n global_steps",
    )

    parser.add_argument(
        "--save_starting_step",
        type=int,
        default=100,
        help="The step from which it starts saving intermediary checkpoints",
    )

    parser.add_argument(
        "--nccl_timeout",
        type=int,
        help="nccl_timeout",
        default=3600
    )

    parser.add_argument("--snr_gamma", action="store_true")

    args = parser.parse_args()

    return args


def add_time_ids(
        unet_config,
        unet_add_embedding,
        text_encoder_2: CLIPTextModelWithProjection,
        original_size: tuple,
        crops_coords_top_left: tuple,
        target_size: tuple,
        dtype: torch.dtype):
    add_time_ids = list(original_size + crops_coords_top_left + target_size)

    passed_add_embed_dim = (
            unet_config.addition_time_embed_dim * len(add_time_ids) + text_encoder_2.config.projection_dim
    )
    expected_add_embed_dim = unet_add_embedding.linear_1.in_features

    if expected_add_embed_dim != passed_add_embed_dim:
        raise ValueError(
            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
        )

    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
    return add_time_ids


def main():
    global_step = 0
    min_steps_before_validation = 0

    args = parse_args()

    next_save_iter = args.save_starting_step

    if args.save_starting_step < 1:
        next_save_iter = None

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        kwargs_handlers=[InitProcessGroupKwargs(timeout=timedelta(args.nccl_timeout))]
    )

    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        nonlocal global_step

        for model in models:
            if isinstance(model, type(accelerator.unwrap_model(unet))):
                model.save_pretrained(os.path.join(output_dir, 'unet'))
                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

    accelerator.register_save_state_pre_hook(save_model_hook)

    set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_local_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Load the tokenizer
    tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
    tokenizer_2 = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer_2")

    # Load models and create wrapper for stable diffusion
    text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
    text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path,
                                                                 subfolder="text_encoder_2")

    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")

    optimizer_resume_path = None

    if args.unet_resume_path:
        optimizer_fp = os.path.join(args.unet_resume_path, "optimizer.bin")

        if os.path.exists(optimizer_fp):
            optimizer_resume_path = optimizer_fp

        unet = UNet3DConditionModel.from_pretrained(args.unet_resume_path,
                                                    subfolder="unet",
                                                    low_cpu_mem_usage=False,
                                                    device_map=None)

    else:
        unet = UNet3DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")

    if args.xformers:
        vae.set_use_memory_efficient_attention_xformers(True, None)
        unet.set_use_memory_efficient_attention_xformers(True, None)

    unet_config = unet.config
    unet_add_embedding = unet.add_embedding

    unet.requires_grad_(False)

    temporal_params = unet.temporal_parameters()

    for p in temporal_params:
        p.requires_grad_(True)

    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    text_encoder_2.requires_grad_(False)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if args.scale_lr:
        args.learning_rate = (
                args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    learning_rate = args.learning_rate

    params_to_optimize = [
        {'params': temporal_params, "lr": learning_rate},
    ]

    optimizer = optimizer_class(
        params_to_optimize,
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    if optimizer_resume_path and not args.disable_optimizer_restore:
        logger.info("Restoring the optimizer.")
        try:

            old_optimizer_state_dict = torch.load(optimizer_resume_path)

            # Extract only the state
            old_state = old_optimizer_state_dict['state']

            # Set the state of the new optimizer
            optimizer.load_state_dict({'state': old_state, 'param_groups': optimizer.param_groups})

            del old_optimizer_state_dict
            del old_state

            torch.cuda.empty_cache()
            torch.cuda.synchronize()
            gc.collect()

            logger.info(f"Restored the optimizer ok")

        except:
            logger.error("Failed to restore the optimizer...", exc_info=True)
            traceback.print_exc()
            raise

    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

    def compute_snr(timesteps):
        """
        Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
        """
        alphas_cumprod = noise_scheduler.alphas_cumprod
        sqrt_alphas_cumprod = alphas_cumprod ** 0.5
        sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

        # Expand the tensors.
        # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
        sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
        alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
        sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

        # Compute SNR.
        snr = (alpha / sigma) ** 2
        return snr

    device = torch.device('cuda')

    image_transforms = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    def image_to_tensor(img):
        with torch.no_grad():

            if img.mode != "RGB":
                img = img.convert("RGB")

            image = image_transforms(img).to(accelerator.device)

            if image.shape[0] == 1:
                image = image.repeat(3, 1, 1)

            if image.shape[0] > 3:
                image = image[:3, :, :]

        return image

    def make_sample(sample):

        nonlocal unet_config
        nonlocal unet_add_embedding

        images = [Image.open(img) for img in sample['image_fps']]

        og_size = images[0].size

        for i, im in enumerate(images):
            if im.mode != "RGB":
                images[i] = im.convert("RGB")

        aspect_ratio_map = res_to_aspect_map[args.resolution]

        required_size = tuple(aspect_ratio_map[args.aspect_ratio])

        if required_size != og_size:

            def resize_image(x):
                img_size = x.size
                if img_size == required_size:
                    return x.resize(required_size, Image.LANCZOS)

                return scale_aspect_fill(x, required_size[0], required_size[1])

            with ThreadPoolExecutor(max_workers=len(images)) as executor:
                images = list(executor.map(resize_image, images))

        frames = torch.stack([image_to_tensor(x) for x in images])

        l, u, *_ = get_crop_coordinates(og_size, images[0].size)
        crop_coords = (l, u)

        additional_time_ids = add_time_ids(
            unet_config,
            unet_add_embedding,
            text_encoder_2,
            og_size,
            crop_coords,
            (required_size[0], required_size[1]),
            dtype=torch.float32
        ).to(device)

        input_ids_0 = tokenizer(
            sample['prompt'],
            padding="do_not_pad",
            truncation=True,
            max_length=tokenizer.model_max_length,
        ).input_ids

        input_ids_1 = tokenizer_2(
            sample['prompt'],
            padding="do_not_pad",
            truncation=True,
            max_length=tokenizer.model_max_length,
        ).input_ids

        return {
            "frames": frames,
            "input_ids_0": input_ids_0,
            "input_ids_1": input_ids_1,
            "additional_time_ids": additional_time_ids,
        }

    def collate_fn(examples: list) -> dict:

        # Two Text encoders
        # First Text Encoder  -> Penultimate Layer
        # Second Text Encoder -> Pooled Layer

        input_ids_0 = [example['input_ids_0'] for example in examples]
        input_ids_0 = tokenizer.pad({"input_ids": input_ids_0}, padding="max_length",
                                    max_length=tokenizer.model_max_length, return_tensors="pt").input_ids

        prompt_embeds_0 = text_encoder(
            input_ids_0.to(device),
            output_hidden_states=True,
        )

        # we take penultimate embeddings from the first text encoder
        prompt_embeds_0 = prompt_embeds_0.hidden_states[-2]

        input_ids_1 = [example['input_ids_1'] for example in examples]
        input_ids_1 = tokenizer_2.pad({"input_ids": input_ids_1}, padding="max_length",
                                      max_length=tokenizer.model_max_length, return_tensors="pt").input_ids

        # We are only ALWAYS interested in the pooled output of the final text encoder
        prompt_embeds = text_encoder_2(
            input_ids_1.to(device),
            output_hidden_states=True
        )

        pooled_prompt_embeds = prompt_embeds[0]
        prompt_embeds_1 = prompt_embeds.hidden_states[-2]

        prompt_embeds = torch.concat([prompt_embeds_0, prompt_embeds_1], dim=-1)

        *_, h, w = examples[0]['frames'].shape

        return {
            "frames": torch.stack([x['frames'] for x in examples]).to(memory_format=torch.contiguous_format).float(),
            "prompt_embeds": prompt_embeds.to(memory_format=torch.contiguous_format).float(),
            "pooled_prompt_embeds": pooled_prompt_embeds,
            "additional_time_ids": torch.stack([x['additional_time_ids'] for x in examples]),
        }

    # Region - Dataloaders
    dataset = HotshotXLDataset(args.data_dir, make_sample)
    dataloader = DataLoader(dataset, args.train_batch_size, shuffle=True, collate_fn=collate_fn)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps)

    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
    )

    unet, optimizer, lr_scheduler, dataloader = accelerator.prepare(
        unet, optimizer, lr_scheduler, dataloader
    )

    def to_images(video_frames: torch.Tensor):
        import torchvision.transforms as transforms
        to_pil = transforms.ToPILImage()
        video_frames = rearrange(video_frames, "b c f w h -> b f c w h")
        bsz = video_frames.shape[0]
        images = []
        for i in range(bsz):
            video = video_frames[i]
            for j in range(video.shape[0]):
                image = to_pil(video[j])
                images.append(image)
        return images

    def to_video_frames(images: list) -> np.ndarray:
        x = np.stack([np.asarray(img) for img in images])
        return np.transpose(x, (0, 3, 1, 2))

    def run_validation(step=0, node_index=0):

        nonlocal global_step
        nonlocal accelerator

        if args.test_prompts:
            prompts = args.test_prompts.split("|")
        else:
            prompts = [
                "a woman is lifting weights in a gym",
                "a group of people are dancing at a party",
                "a teddy bear doing the front crawl"
            ]

        torch.cuda.empty_cache()
        gc.collect()

        logger.info(f"Running inference to test model at {step} steps")
        with torch.no_grad():

            pipe = HotshotXLPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                unet=accelerator.unwrap_model(unet),
                text_encoder=text_encoder,
                text_encoder_2=text_encoder_2,
                vae=vae,
            )

            videos = []

            aspect_ratio_map = res_to_aspect_map[args.resolution]
            w, h = aspect_ratio_map[args.aspect_ratio]

            for prompt in prompts:
                video = pipe(prompt,
                             width=w,
                             height=h,
                             original_size=(1920, 1080),  # todo - pass in as args?
                             target_size=(args.resolution, args.resolution),
                             num_inference_steps=30,
                             video_length=8,
                             output_type="tensor",
                             generator=torch.Generator().manual_seed(111)).videos

                videos.append(to_images(video))

            for tracker in accelerator.trackers:

                if tracker.name == "wandb":
                    tracker.log(
                        {
                            "validation": [wandb.Video(to_video_frames(video), fps=8, format='mp4') for video in
                                           videos],
                        }, step=global_step
                    )

            del pipe

        return

    # Move text_encode and vae to gpu.
    vae.to(accelerator.device, dtype=torch.bfloat16 if args.vae_b16 else torch.float32)
    text_encoder.to(accelerator.device)
    text_encoder_2.to(accelerator.device)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.

    num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterward we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initialize automatically on the main process.

    if accelerator.is_main_process:
        accelerator.init_trackers(args.project_name)

    def bar(prg):
        br = '|' + '█' * prg + ' ' * (25 - prg) + '|'
        return br

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    if accelerator.is_main_process:
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(dataset)}")
        logger.info(f"  Num Epochs = {args.num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
        logger.info(f"  Total optimization steps = {args.max_train_steps}")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)

    latents_scaler = vae.config.scaling_factor

    def save_checkpoint():
        save_dir = Path(args.output_dir)
        save_dir = str(save_dir)
        save_dir = save_dir.replace(" ", "_")
        if not os.path.exists(save_dir):
            os.makedirs(save_dir, exist_ok=True)
        accelerator.save_state(save_dir)

    def save_checkpoint_and_wait():
        if accelerator.is_main_process:
            save_checkpoint()
        accelerator.wait_for_everyone()

    def save_model_and_wait():
        if accelerator.is_main_process:
            HotshotXLPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                unet=accelerator.unwrap_model(unet),
                text_encoder=text_encoder,
                text_encoder_2=text_encoder_2,
                vae=vae,
            ).save_pretrained(args.output_dir, safe_serialization=True)
        accelerator.wait_for_everyone()

    def compute_loss_from_batch(batch: dict):
        frames = batch["frames"]
        bsz, number_of_frames, c, w, h = frames.shape

        # Convert images to latent space
        with torch.no_grad():

            if args.max_vae_encode:
                latents = []

                x = rearrange(frames, "bs nf c h w -> (bs nf) c h w")

                for latent_index in range(0, x.shape[0], args.max_vae_encode):
                    sample = x[latent_index: latent_index + args.max_vae_encode]

                    latent = vae.encode(sample.to(dtype=vae.dtype)).latent_dist.sample().float()
                    if len(latent.shape) == 3:
                        latent = latent.unsqueeze(0)

                    latents.append(latent)
                    torch.cuda.empty_cache()

                latents = torch.cat(latents, dim=0)
            else:

                # convert the latents from 5d -> 4d, so we can run it though the vae encoder
                x = rearrange(frames, "bs nf c h w -> (bs nf) c h w")

                del frames

                torch.cuda.empty_cache()

                latents = vae.encode(x.to(dtype=vae.dtype)).latent_dist.sample().float()

            if args.latent_nan_checking and torch.any(torch.isnan(latents)):
                accelerator.print("NaN found in latents, replacing with zeros")
                latents = torch.where(torch.isnan(latents), torch.zeros_like(latents), latents)

            latents = rearrange(latents, "(b f) c h w -> b c f h w", b=bsz)

            torch.cuda.empty_cache()

            noise = torch.randn_like(latents, device=latents.device)

            if args.noise_offset:
                # https://www.crosslabs.org//blog/diffusion-with-offset-noise
                noise += args.noise_offset * torch.randn(
                    (latents.shape[0], latents.shape[1], 1, 1, 1), device=latents.device
                )

            # Sample a random timestep for each image
            timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
            timesteps = timesteps.long()  # .repeat_interleave(number_of_frames)
            latents = latents * latents_scaler

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)

            prompt_embeds = batch['prompt_embeds']
            add_text_embeds = batch['pooled_prompt_embeds']

            additional_time_ids = batch['additional_time_ids']  # .repeat_interleave(number_of_frames, dim=0)

            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": additional_time_ids}

            noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(latents, noise, timesteps)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

        noisy_latents.requires_grad = True

        model_pred = unet(noisy_latents,
                          timesteps,
                          cross_attention_kwargs=None,
                          encoder_hidden_states=prompt_embeds,
                          added_cond_kwargs=added_cond_kwargs,
                          return_dict=False,
                          )[0]

        if args.snr_gamma:
            # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
            # Since we predict the noise instead of x_0, the original formulation is slightly changed.
            # This is discussed in Section 4.2 of the same paper.
            snr = compute_snr(timesteps)
            mse_loss_weights = (
                    torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
            )
            # We first calculate the original loss. Then we mean over the non-batch dimensions and
            # rebalance the sample-wise losses with their respective loss weights.
            # Finally, we take the mean of the rebalanced loss.
            loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")

            loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
            return loss.mean()
        else:
            return F.mse_loss(model_pred.float(), target.float(), reduction='mean')

    def process_batch(batch: dict):
        nonlocal global_step
        nonlocal next_save_iter

        now = time.time()

        with accelerator.accumulate(unet):

            logging_data = {}
            if global_step == 0:
                # print(f"Running initial validation at step")
                if accelerator.is_main_process and args.run_validation_at_start:
                    run_validation(step=global_step, node_index=accelerator.process_index // 8)
                accelerator.wait_for_everyone()

            loss = compute_loss_from_batch(batch)

            accelerator.backward(loss)

            if accelerator.sync_gradients:
                accelerator.clip_grad_norm_(temporal_params, args.max_grad_norm)

            optimizer.step()

            lr_scheduler.step()
            optimizer.zero_grad()

        # Checks if the accelerator has performed an optimization step behind the scenes
        if accelerator.sync_gradients:
            progress_bar.update(1)
            global_step += 1

        fll = round((global_step * 100) / args.max_train_steps)
        fll = round(fll / 4)
        pr = bar(fll)

        logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "loss_time": (time.time() - now)}

        if args.validate_every_steps is not None and global_step > min_steps_before_validation and global_step % args.validate_every_steps == 0:
            if accelerator.is_main_process:
                run_validation(step=global_step, node_index=accelerator.process_index // 8)

            accelerator.wait_for_everyone()

        for key, val in logging_data.items():
            logs[key] = val

        progress_bar.set_postfix(**logs)
        progress_bar.set_description_str("Progress:" + pr)
        accelerator.log(logs, step=global_step)

        if accelerator.is_main_process \
                and next_save_iter is not None \
                and global_step < args.max_train_steps \
                and global_step + 1 == next_save_iter:
            save_checkpoint()

            torch.cuda.empty_cache()
            gc.collect()

            next_save_iter += args.save_n_steps

    for epoch in range(args.num_train_epochs):
        unet.train()

        for step, batch in enumerate(dataloader):
            process_batch(batch)

            if global_step >= args.max_train_steps:
                break

        if global_step >= args.max_train_steps:
            logger.info("Max train steps reached. Breaking while loop")
            break

        accelerator.wait_for_everyone()

    save_model_and_wait()

    accelerator.end_training()


if __name__ == "__main__":
    mp.set_start_method('spawn')
    main()