File size: 35,241 Bytes
3ea3e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
import traceback
from pathlib import Path
import time
import torch
import torch.utils.checkpoint
import torch.multiprocessing as mp
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL
from diffusers.optimization import get_scheduler
from diffusers import DDPMScheduler
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
import torch.nn.functional as F
import gc
from typing import Callable
from PIL import Image
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from hotshot_xl.models.unet import UNet3DConditionModel
from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline
from hotshot_xl.utils import get_crop_coordinates, res_to_aspect_map, scale_aspect_fill
from einops import rearrange
from torch.utils.data import Dataset, DataLoader
from datetime import timedelta
from accelerate.utils.dataclasses import InitProcessGroupKwargs
from diffusers.utils import is_wandb_available
if is_wandb_available():
import wandb
logger = get_logger(__file__)
class HotshotXLDataset(Dataset):
def __init__(self, directory: str, make_sample_fn: Callable):
"""
Training data folder needs to look like:
+ training_samples
--- + sample_001
------- + frame_0.jpg
------- + frame_1.jpg
------- + ...
------- + frame_n.jpg
------- + prompt.txt
--- + sample_002
------- + frame_0.jpg
------- + frame_1.jpg
------- + ...
------- + frame_n.jpg
------- + prompt.txt
Args:
directory: base directory of the training samples
make_sample_fn: a delegate call to load the images and prep the sample for batching
"""
samples_dir = [os.path.join(directory, p) for p in os.listdir(directory)]
samples_dir = [p for p in samples_dir if os.path.isdir(p)]
samples = []
for d in samples_dir:
file_paths = [os.path.join(d, p) for p in os.listdir(d)]
image_fps = [f for f in file_paths if os.path.splitext(f)[1] in {".png", ".jpg"}]
with open(os.path.join(d, "prompt.txt")) as f:
prompt = f.read().strip()
samples.append({
"image_fps": image_fps,
"prompt": prompt
})
self.samples = samples
self.length = len(samples)
self.make_sample_fn = make_sample_fn
def __len__(self):
return self.length
def __getitem__(self, index):
return self.make_sample_fn(
self.samples[index]
)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="hotshotco/Hotshot-XL",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--unet_resume_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--data_dir",
type=str,
required=True,
help="Path to data to train.",
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--run_validation_at_start", action="store_true")
parser.add_argument("--max_vae_encode", type=int, default=None)
parser.add_argument("--vae_b16", action="store_true")
parser.add_argument("--disable_optimizer_restore", action="store_true")
parser.add_argument(
"--latent_nan_checking",
action="store_true",
help="Check if latents contain nans - important if vae is f16",
)
parser.add_argument(
"--test_prompts",
type=str,
default=None,
)
parser.add_argument(
"--project_name",
type=str,
default="fine-tune-hotshot-xl",
help="the name of the run",
)
parser.add_argument(
"--run_name",
type=str,
default="run-01",
help="the name of the run",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--noise_offset", type=float, default=0.05, help="The scale of noise offset.")
parser.add_argument("--seed", type=int, default=111, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--aspect_ratio",
type=str,
default="1.75",
choices=list(res_to_aspect_map[512].keys()),
help="Aspect ratio to train at",
)
parser.add_argument("--xformers", action="store_true")
parser.add_argument(
"--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=9999999,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--validate_every_steps",
type=int,
default=100,
help="Run inference every",
)
parser.add_argument(
"--save_n_steps",
type=int,
default=100,
help="Save the model every n global_steps",
)
parser.add_argument(
"--save_starting_step",
type=int,
default=100,
help="The step from which it starts saving intermediary checkpoints",
)
parser.add_argument(
"--nccl_timeout",
type=int,
help="nccl_timeout",
default=3600
)
parser.add_argument("--snr_gamma", action="store_true")
args = parser.parse_args()
return args
def add_time_ids(
unet_config,
unet_add_embedding,
text_encoder_2: CLIPTextModelWithProjection,
original_size: tuple,
crops_coords_top_left: tuple,
target_size: tuple,
dtype: torch.dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
unet_config.addition_time_embed_dim * len(add_time_ids) + text_encoder_2.config.projection_dim
)
expected_add_embed_dim = unet_add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def main():
global_step = 0
min_steps_before_validation = 0
args = parse_args()
next_save_iter = args.save_starting_step
if args.save_starting_step < 1:
next_save_iter = None
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
kwargs_handlers=[InitProcessGroupKwargs(timeout=timedelta(args.nccl_timeout))]
)
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
nonlocal global_step
for model in models:
if isinstance(model, type(accelerator.unwrap_model(unet))):
model.save_pretrained(os.path.join(output_dir, 'unet'))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
accelerator.register_save_state_pre_hook(save_model_hook)
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_local_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer_2")
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path,
subfolder="text_encoder_2")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
optimizer_resume_path = None
if args.unet_resume_path:
optimizer_fp = os.path.join(args.unet_resume_path, "optimizer.bin")
if os.path.exists(optimizer_fp):
optimizer_resume_path = optimizer_fp
unet = UNet3DConditionModel.from_pretrained(args.unet_resume_path,
subfolder="unet",
low_cpu_mem_usage=False,
device_map=None)
else:
unet = UNet3DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
if args.xformers:
vae.set_use_memory_efficient_attention_xformers(True, None)
unet.set_use_memory_efficient_attention_xformers(True, None)
unet_config = unet.config
unet_add_embedding = unet.add_embedding
unet.requires_grad_(False)
temporal_params = unet.temporal_parameters()
for p in temporal_params:
p.requires_grad_(True)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
learning_rate = args.learning_rate
params_to_optimize = [
{'params': temporal_params, "lr": learning_rate},
]
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
if optimizer_resume_path and not args.disable_optimizer_restore:
logger.info("Restoring the optimizer.")
try:
old_optimizer_state_dict = torch.load(optimizer_resume_path)
# Extract only the state
old_state = old_optimizer_state_dict['state']
# Set the state of the new optimizer
optimizer.load_state_dict({'state': old_state, 'param_groups': optimizer.param_groups})
del old_optimizer_state_dict
del old_state
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
logger.info(f"Restored the optimizer ok")
except:
logger.error("Failed to restore the optimizer...", exc_info=True)
traceback.print_exc()
raise
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
def compute_snr(timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod ** 0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
device = torch.device('cuda')
image_transforms = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def image_to_tensor(img):
with torch.no_grad():
if img.mode != "RGB":
img = img.convert("RGB")
image = image_transforms(img).to(accelerator.device)
if image.shape[0] == 1:
image = image.repeat(3, 1, 1)
if image.shape[0] > 3:
image = image[:3, :, :]
return image
def make_sample(sample):
nonlocal unet_config
nonlocal unet_add_embedding
images = [Image.open(img) for img in sample['image_fps']]
og_size = images[0].size
for i, im in enumerate(images):
if im.mode != "RGB":
images[i] = im.convert("RGB")
aspect_ratio_map = res_to_aspect_map[args.resolution]
required_size = tuple(aspect_ratio_map[args.aspect_ratio])
if required_size != og_size:
def resize_image(x):
img_size = x.size
if img_size == required_size:
return x.resize(required_size, Image.LANCZOS)
return scale_aspect_fill(x, required_size[0], required_size[1])
with ThreadPoolExecutor(max_workers=len(images)) as executor:
images = list(executor.map(resize_image, images))
frames = torch.stack([image_to_tensor(x) for x in images])
l, u, *_ = get_crop_coordinates(og_size, images[0].size)
crop_coords = (l, u)
additional_time_ids = add_time_ids(
unet_config,
unet_add_embedding,
text_encoder_2,
og_size,
crop_coords,
(required_size[0], required_size[1]),
dtype=torch.float32
).to(device)
input_ids_0 = tokenizer(
sample['prompt'],
padding="do_not_pad",
truncation=True,
max_length=tokenizer.model_max_length,
).input_ids
input_ids_1 = tokenizer_2(
sample['prompt'],
padding="do_not_pad",
truncation=True,
max_length=tokenizer.model_max_length,
).input_ids
return {
"frames": frames,
"input_ids_0": input_ids_0,
"input_ids_1": input_ids_1,
"additional_time_ids": additional_time_ids,
}
def collate_fn(examples: list) -> dict:
# Two Text encoders
# First Text Encoder -> Penultimate Layer
# Second Text Encoder -> Pooled Layer
input_ids_0 = [example['input_ids_0'] for example in examples]
input_ids_0 = tokenizer.pad({"input_ids": input_ids_0}, padding="max_length",
max_length=tokenizer.model_max_length, return_tensors="pt").input_ids
prompt_embeds_0 = text_encoder(
input_ids_0.to(device),
output_hidden_states=True,
)
# we take penultimate embeddings from the first text encoder
prompt_embeds_0 = prompt_embeds_0.hidden_states[-2]
input_ids_1 = [example['input_ids_1'] for example in examples]
input_ids_1 = tokenizer_2.pad({"input_ids": input_ids_1}, padding="max_length",
max_length=tokenizer.model_max_length, return_tensors="pt").input_ids
# We are only ALWAYS interested in the pooled output of the final text encoder
prompt_embeds = text_encoder_2(
input_ids_1.to(device),
output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds_1 = prompt_embeds.hidden_states[-2]
prompt_embeds = torch.concat([prompt_embeds_0, prompt_embeds_1], dim=-1)
*_, h, w = examples[0]['frames'].shape
return {
"frames": torch.stack([x['frames'] for x in examples]).to(memory_format=torch.contiguous_format).float(),
"prompt_embeds": prompt_embeds.to(memory_format=torch.contiguous_format).float(),
"pooled_prompt_embeds": pooled_prompt_embeds,
"additional_time_ids": torch.stack([x['additional_time_ids'] for x in examples]),
}
# Region - Dataloaders
dataset = HotshotXLDataset(args.data_dir, make_sample)
dataloader = DataLoader(dataset, args.train_batch_size, shuffle=True, collate_fn=collate_fn)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
unet, optimizer, lr_scheduler, dataloader = accelerator.prepare(
unet, optimizer, lr_scheduler, dataloader
)
def to_images(video_frames: torch.Tensor):
import torchvision.transforms as transforms
to_pil = transforms.ToPILImage()
video_frames = rearrange(video_frames, "b c f w h -> b f c w h")
bsz = video_frames.shape[0]
images = []
for i in range(bsz):
video = video_frames[i]
for j in range(video.shape[0]):
image = to_pil(video[j])
images.append(image)
return images
def to_video_frames(images: list) -> np.ndarray:
x = np.stack([np.asarray(img) for img in images])
return np.transpose(x, (0, 3, 1, 2))
def run_validation(step=0, node_index=0):
nonlocal global_step
nonlocal accelerator
if args.test_prompts:
prompts = args.test_prompts.split("|")
else:
prompts = [
"a woman is lifting weights in a gym",
"a group of people are dancing at a party",
"a teddy bear doing the front crawl"
]
torch.cuda.empty_cache()
gc.collect()
logger.info(f"Running inference to test model at {step} steps")
with torch.no_grad():
pipe = HotshotXLPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
)
videos = []
aspect_ratio_map = res_to_aspect_map[args.resolution]
w, h = aspect_ratio_map[args.aspect_ratio]
for prompt in prompts:
video = pipe(prompt,
width=w,
height=h,
original_size=(1920, 1080), # todo - pass in as args?
target_size=(args.resolution, args.resolution),
num_inference_steps=30,
video_length=8,
output_type="tensor",
generator=torch.Generator().manual_seed(111)).videos
videos.append(to_images(video))
for tracker in accelerator.trackers:
if tracker.name == "wandb":
tracker.log(
{
"validation": [wandb.Video(to_video_frames(video), fps=8, format='mp4') for video in
videos],
}, step=global_step
)
del pipe
return
# Move text_encode and vae to gpu.
vae.to(accelerator.device, dtype=torch.bfloat16 if args.vae_b16 else torch.float32)
text_encoder.to(accelerator.device)
text_encoder_2.to(accelerator.device)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterward we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initialize automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers(args.project_name)
def bar(prg):
br = '|' + '█' * prg + ' ' * (25 - prg) + '|'
return br
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
if accelerator.is_main_process:
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
latents_scaler = vae.config.scaling_factor
def save_checkpoint():
save_dir = Path(args.output_dir)
save_dir = str(save_dir)
save_dir = save_dir.replace(" ", "_")
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
accelerator.save_state(save_dir)
def save_checkpoint_and_wait():
if accelerator.is_main_process:
save_checkpoint()
accelerator.wait_for_everyone()
def save_model_and_wait():
if accelerator.is_main_process:
HotshotXLPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
).save_pretrained(args.output_dir, safe_serialization=True)
accelerator.wait_for_everyone()
def compute_loss_from_batch(batch: dict):
frames = batch["frames"]
bsz, number_of_frames, c, w, h = frames.shape
# Convert images to latent space
with torch.no_grad():
if args.max_vae_encode:
latents = []
x = rearrange(frames, "bs nf c h w -> (bs nf) c h w")
for latent_index in range(0, x.shape[0], args.max_vae_encode):
sample = x[latent_index: latent_index + args.max_vae_encode]
latent = vae.encode(sample.to(dtype=vae.dtype)).latent_dist.sample().float()
if len(latent.shape) == 3:
latent = latent.unsqueeze(0)
latents.append(latent)
torch.cuda.empty_cache()
latents = torch.cat(latents, dim=0)
else:
# convert the latents from 5d -> 4d, so we can run it though the vae encoder
x = rearrange(frames, "bs nf c h w -> (bs nf) c h w")
del frames
torch.cuda.empty_cache()
latents = vae.encode(x.to(dtype=vae.dtype)).latent_dist.sample().float()
if args.latent_nan_checking and torch.any(torch.isnan(latents)):
accelerator.print("NaN found in latents, replacing with zeros")
latents = torch.where(torch.isnan(latents), torch.zeros_like(latents), latents)
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=bsz)
torch.cuda.empty_cache()
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1, 1), device=latents.device
)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long() # .repeat_interleave(number_of_frames)
latents = latents * latents_scaler
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
prompt_embeds = batch['prompt_embeds']
add_text_embeds = batch['pooled_prompt_embeds']
additional_time_ids = batch['additional_time_ids'] # .repeat_interleave(number_of_frames, dim=0)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": additional_time_ids}
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
noisy_latents.requires_grad = True
model_pred = unet(noisy_latents,
timesteps,
cross_attention_kwargs=None,
encoder_hidden_states=prompt_embeds,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if args.snr_gamma:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
# We first calculate the original loss. Then we mean over the non-batch dimensions and
# rebalance the sample-wise losses with their respective loss weights.
# Finally, we take the mean of the rebalanced loss.
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
return loss.mean()
else:
return F.mse_loss(model_pred.float(), target.float(), reduction='mean')
def process_batch(batch: dict):
nonlocal global_step
nonlocal next_save_iter
now = time.time()
with accelerator.accumulate(unet):
logging_data = {}
if global_step == 0:
# print(f"Running initial validation at step")
if accelerator.is_main_process and args.run_validation_at_start:
run_validation(step=global_step, node_index=accelerator.process_index // 8)
accelerator.wait_for_everyone()
loss = compute_loss_from_batch(batch)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(temporal_params, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
fll = round((global_step * 100) / args.max_train_steps)
fll = round(fll / 4)
pr = bar(fll)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "loss_time": (time.time() - now)}
if args.validate_every_steps is not None and global_step > min_steps_before_validation and global_step % args.validate_every_steps == 0:
if accelerator.is_main_process:
run_validation(step=global_step, node_index=accelerator.process_index // 8)
accelerator.wait_for_everyone()
for key, val in logging_data.items():
logs[key] = val
progress_bar.set_postfix(**logs)
progress_bar.set_description_str("Progress:" + pr)
accelerator.log(logs, step=global_step)
if accelerator.is_main_process \
and next_save_iter is not None \
and global_step < args.max_train_steps \
and global_step + 1 == next_save_iter:
save_checkpoint()
torch.cuda.empty_cache()
gc.collect()
next_save_iter += args.save_n_steps
for epoch in range(args.num_train_epochs):
unet.train()
for step, batch in enumerate(dataloader):
process_batch(batch)
if global_step >= args.max_train_steps:
break
if global_step >= args.max_train_steps:
logger.info("Max train steps reached. Breaking while loop")
break
accelerator.wait_for_everyone()
save_model_and_wait()
accelerator.end_training()
if __name__ == "__main__":
mp.set_start_method('spawn')
main()
|