File size: 26,035 Bytes
ba32b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
from torch import nn
import torch
import torch.nn.functional as F
from modules.util import AntiAliasInterpolation2d, make_coordinate_grid_2d
from torchvision import models
import numpy as np
from torch.autograd import grad
import modules.hopenet as hopenet
from torchvision import transforms

import random
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from prefetch_generator import BackgroundGenerator
from basicsr.utils.img_process_util import filter2D
from basicsr.utils import DiffJPEG, USMSharp


class Vgg19(torch.nn.Module):
    """
    Vgg19 network for perceptual loss.
    """
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])

        self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))),
                                       requires_grad=False)
        self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))),
                                      requires_grad=False)

        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        X = (X - self.mean) / self.std
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out


class ImagePyramide(torch.nn.Module):
    """
    Create image pyramide for computing pyramide perceptual loss.
    """
    def __init__(self, scales, num_channels):
        super(ImagePyramide, self).__init__()
        downs = {}
        for scale in scales:
            downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale)
        self.downs = nn.ModuleDict(downs)

    def forward(self, x):
        out_dict = {}
        for scale, down_module in self.downs.items():
            out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x)
        return out_dict


class Transform:
    """
    Random tps transformation for equivariance constraints.
    """
    def __init__(self, bs, **kwargs):
        noise = torch.normal(mean=0, std=kwargs['sigma_affine'] * torch.ones([bs, 2, 3]))
        self.theta = noise + torch.eye(2, 3).view(1, 2, 3)
        self.bs = bs

        if ('sigma_tps' in kwargs) and ('points_tps' in kwargs):
            self.tps = True
            self.control_points = make_coordinate_grid_2d((kwargs['points_tps'], kwargs['points_tps']), type=noise.type())
            self.control_points = self.control_points.unsqueeze(0)
            self.control_params = torch.normal(mean=0,
                                               std=kwargs['sigma_tps'] * torch.ones([bs, 1, kwargs['points_tps'] ** 2]))
        else:
            self.tps = False

    def transform_frame(self, frame):
        grid = make_coordinate_grid_2d(frame.shape[2:], type=frame.type()).unsqueeze(0)
        grid = grid.view(1, frame.shape[2] * frame.shape[3], 2)
        grid = self.warp_coordinates(grid).view(self.bs, frame.shape[2], frame.shape[3], 2)
        return F.grid_sample(frame, grid, padding_mode="reflection")

    def warp_coordinates(self, coordinates):
        theta = self.theta.type(coordinates.type())
        theta = theta.unsqueeze(1)
        transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:]
        transformed = transformed.squeeze(-1)

        if self.tps:
            control_points = self.control_points.type(coordinates.type())
            control_params = self.control_params.type(coordinates.type())
            distances = coordinates.view(coordinates.shape[0], -1, 1, 2) - control_points.view(1, 1, -1, 2)
            distances = torch.abs(distances).sum(-1)

            result = distances ** 2
            result = result * torch.log(distances + 1e-6)
            result = result * control_params
            result = result.sum(dim=2).view(self.bs, coordinates.shape[1], 1)
            transformed = transformed + result

        return transformed

    def jacobian(self, coordinates):
        new_coordinates = self.warp_coordinates(coordinates)
        grad_x = grad(new_coordinates[..., 0].sum(), coordinates, create_graph=True)
        grad_y = grad(new_coordinates[..., 1].sum(), coordinates, create_graph=True)
        jacobian = torch.cat([grad_x[0].unsqueeze(-2), grad_y[0].unsqueeze(-2)], dim=-2)
        return jacobian


def detach_kp(kp):
    return {key: value.detach() for key, value in kp.items()}


def headpose_pred_to_degree(pred):
    device = pred.device
    idx_tensor = [idx for idx in range(66)]
    idx_tensor = torch.FloatTensor(idx_tensor).to(device)
    pred = F.softmax(pred)
    degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 99

    return degree

'''
# beta version
def get_rotation_matrix(yaw, pitch, roll):
    yaw = yaw / 180 * 3.14
    pitch = pitch / 180 * 3.14
    roll = roll / 180 * 3.14

    roll = roll.unsqueeze(1)
    pitch = pitch.unsqueeze(1)
    yaw = yaw.unsqueeze(1)

    roll_mat = torch.cat([torch.ones_like(roll), torch.zeros_like(roll), torch.zeros_like(roll), 
                          torch.zeros_like(roll), torch.cos(roll), -torch.sin(roll),
                          torch.zeros_like(roll), torch.sin(roll), torch.cos(roll)], dim=1)
    roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)

    pitch_mat = torch.cat([torch.cos(pitch), torch.zeros_like(pitch), torch.sin(pitch), 
                           torch.zeros_like(pitch), torch.ones_like(pitch), torch.zeros_like(pitch),
                           -torch.sin(pitch), torch.zeros_like(pitch), torch.cos(pitch)], dim=1)
    pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)

    yaw_mat = torch.cat([torch.cos(yaw), -torch.sin(yaw), torch.zeros_like(yaw),  
                         torch.sin(yaw), torch.cos(yaw), torch.zeros_like(yaw),
                         torch.zeros_like(yaw), torch.zeros_like(yaw), torch.ones_like(yaw)], dim=1)
    yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)

    rot_mat = torch.einsum('bij,bjk,bkm->bim', roll_mat, pitch_mat, yaw_mat)

    return rot_mat
'''

def get_rotation_matrix(yaw, pitch, roll):
    yaw = yaw / 180 * 3.14
    pitch = pitch / 180 * 3.14
    roll = roll / 180 * 3.14

    roll = roll.unsqueeze(1)
    pitch = pitch.unsqueeze(1)
    yaw = yaw.unsqueeze(1)

    pitch_mat = torch.cat([torch.ones_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch), 
                          torch.zeros_like(pitch), torch.cos(pitch), -torch.sin(pitch),
                          torch.zeros_like(pitch), torch.sin(pitch), torch.cos(pitch)], dim=1)
    pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)

    yaw_mat = torch.cat([torch.cos(yaw), torch.zeros_like(yaw), torch.sin(yaw), 
                           torch.zeros_like(yaw), torch.ones_like(yaw), torch.zeros_like(yaw),
                           -torch.sin(yaw), torch.zeros_like(yaw), torch.cos(yaw)], dim=1)
    yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)

    roll_mat = torch.cat([torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll),  
                         torch.sin(roll), torch.cos(roll), torch.zeros_like(roll),
                         torch.zeros_like(roll), torch.zeros_like(roll), torch.ones_like(roll)], dim=1)
    roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)

    rot_mat = torch.einsum('bij,bjk,bkm->bim', pitch_mat, yaw_mat, roll_mat)

    return rot_mat

def keypoint_transformation(kp_canonical, he, estimate_jacobian=True):
    kp = kp_canonical['value']    # (bs, k, 3)
    yaw, pitch, roll = he['yaw'], he['pitch'], he['roll']
    t, exp = he['t'], he['exp']
    
    yaw = headpose_pred_to_degree(yaw)
    pitch = headpose_pred_to_degree(pitch)
    roll = headpose_pred_to_degree(roll)

    rot_mat = get_rotation_matrix(yaw, pitch, roll)    # (bs, 3, 3)
    
    # keypoint rotation
    kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp)

    # keypoint translation
    t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1)
    kp_t = kp_rotated + t

    # add expression deviation 
    exp = exp.view(exp.shape[0], -1, 3)
    kp_transformed = kp_t + exp

    if estimate_jacobian:
        jacobian = kp_canonical['jacobian']   # (bs, k ,3, 3)
        jacobian_transformed = torch.einsum('bmp,bkps->bkms', rot_mat, jacobian)
    else:
        jacobian_transformed = None

    return {'value': kp_transformed, 'jacobian': jacobian_transformed}

class GeneratorFullModel(torch.nn.Module):
    """
    Merge all generator related updates into single model for better multi-gpu usage
    """

    def __init__(self, kp_extractor, he_estimator, generator, discriminator, train_params, estimate_jacobian=True):
        super(GeneratorFullModel, self).__init__()
        self.kp_extractor = kp_extractor
        self.he_estimator = he_estimator
        self.generator = generator
        self.discriminator = discriminator
        self.train_params = train_params
        self.scales = train_params['scales']
        self.disc_scales = self.discriminator.scales
        self.pyramid = ImagePyramide(self.scales, generator.image_channel)
        if torch.cuda.is_available():
            self.pyramid = self.pyramid.cuda()

        self.loss_weights = train_params['loss_weights']

        self.estimate_jacobian = estimate_jacobian

        if sum(self.loss_weights['perceptual']) != 0:
            self.vgg = Vgg19()
            if torch.cuda.is_available():
                self.vgg = self.vgg.cuda()

        self.L1 = nn.L1Loss().cuda()

        if self.loss_weights['headpose'] != 0:
            self.hopenet = hopenet.Hopenet(models.resnet.Bottleneck, [3, 4, 6, 3], 66)
            print('Loading hopenet')
            hopenet_state_dict = torch.load(train_params['hopenet_snapshot'])
            self.hopenet.load_state_dict(hopenet_state_dict)
            if torch.cuda.is_available():
                self.hopenet = self.hopenet.cuda()
                self.hopenet.eval()
        
        self.jpeger = DiffJPEG(differentiable=False).cuda()
        self.usm_sharpener = USMSharp().cuda()

        self.resize_prob = [0.2, 0.7, 0.1]
        self.resize_range= [0.5, 1.2]
        self.noise_range = [1, 10]
        self.poisson_scale_range =[0.05, 1]
        self.jpeg_range = [10, 25]
        
        self.opt_scale = 1

        self.resize_prob2 = [0.3, 0.4, 0.3]
        self.resize_range2= [0.5, 1.2]
        self.noise_range2 = [1, 10]
        self.poisson_scale_range2 = [0.05, 1.0]
        self.jpeg_range2 = [10, 25]


    def forward(self, x, config):
        kp_canonical = self.kp_extractor(x['source'])     # {'value': value, 'jacobian': jacobian}   

        he_source = self.he_estimator(x['source'])        # {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp}
        he_driving = self.he_estimator(x['driving'])      # {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp}

        # {'value': value, 'jacobian': jacobian}
        kp_source = keypoint_transformation(kp_canonical, he_source, self.estimate_jacobian)
        kp_driving = keypoint_transformation(kp_canonical, he_driving, self.estimate_jacobian)
        if config['train_params']['low_quality_train']:
            # ----------------------- The first degradation process ----------------------- #
            # blur
            # x_source = self.usm_sharpener(x['source'])
            x_source = x['source']
            x_source = filter2D(x_source, x['kernel'])
            
            # random resize
            updown_type = random.choices(['up', 'down', 'keep'], self.resize_prob)[0]
            if updown_type == 'up':
                scale = np.random.uniform(1, self.resize_range[1])
            elif updown_type == 'down':
                scale = np.random.uniform(self.resize_range[0], 1)
            else:
                scale = 1
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            x_source = F.interpolate(x_source, scale_factor=scale, mode=mode)

            # add noise
            gray_noise_prob = 0.4
            if np.random.uniform() < 0.5:
                x_source = random_add_gaussian_noise_pt(
                    x_source, sigma_range=self.noise_range, clip=True, rounds=False, gray_prob=gray_noise_prob)
            else:
                x_source = random_add_poisson_noise_pt(
                    x_source,
                    scale_range=self.poisson_scale_range,
                    gray_prob=gray_noise_prob,
                    clip=True,
                    rounds=False)
            # JPEG compression
            jpeg_p = x_source.new_zeros(x_source.size(0)).uniform_(*self.jpeg_range)
            x_source = torch.clamp(x_source, 0, 1)  # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
            x_source = self.jpeger(x_source, quality=jpeg_p)
            
            # ----------------------- The second degradation process ----------------------- #
            # blur
            if np.random.uniform() < 0.8:
                x_source = filter2D(x_source, x['kernel2'].cuda())
            # random resize
            updown_type = random.choices(['up', 'down', 'keep'], self.resize_prob2)[0]
            if updown_type == 'up':
                scale = np.random.uniform(1, self.resize_range2[1])
            elif updown_type == 'down':
                scale = np.random.uniform(self.resize_range2[0], 1)
            else:
                scale = 1
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            x_source = F.interpolate(
                x_source, size=(int(config['dataset_params']['frame_shape'][0] / self.opt_scale * scale), int(config['dataset_params']['frame_shape'][1] / self.opt_scale * scale)), mode=mode)
            # add noise
            gray_noise_prob = 0.4
            if np.random.uniform() < 0.5:
                x_source = random_add_gaussian_noise_pt(
                    x_source, sigma_range=self.noise_range2, clip=True, rounds=False, gray_prob=gray_noise_prob)
            else:
                x_source = random_add_poisson_noise_pt(
                    x_source,
                    scale_range=self.poisson_scale_range2,
                    gray_prob=gray_noise_prob,
                    clip=True,
                    rounds=False)

            # JPEG compression + the final sinc filter
            # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
            # as one operation.
            # We consider two orders:
            #   1. [resize back + sinc filter] + JPEG compression
            #   2. JPEG compression + [resize back + sinc filter]
            # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
            if np.random.uniform() < 0.5:
                # resize back + the final sinc filter
                mode = random.choice(['area', 'bilinear', 'bicubic'])
                x_source = F.interpolate(x_source, size=(config['dataset_params']['frame_shape'][0] // self.opt_scale, config['dataset_params']['frame_shape'][1] // self.opt_scale), mode=mode)
                x_source = filter2D(x_source, x['sinc_kernel'].cuda())
                # JPEG compression
                jpeg_p = x_source.new_zeros(x_source.size(0)).uniform_(*self.jpeg_range2)
                x_source = torch.clamp(x_source, 0, 1)
                x_source = self.jpeger(x_source, quality=jpeg_p)
            else:
                # JPEG compression
                jpeg_p = x_source.new_zeros(x_source.size(0)).uniform_(*self.jpeg_range2)
                x_source = torch.clamp(x_source, 0, 1)
                x_source = self.jpeger(x_source, quality=jpeg_p)
                # resize back + the final sinc filter
                mode = random.choice(['area', 'bilinear', 'bicubic'])
                x_source = F.interpolate(x_source, size=(config['dataset_params']['frame_shape'][0] // self.opt_scale, config['dataset_params']['frame_shape'][1] // self.opt_scale), mode=mode)
                x_source = filter2D(x_source, x['sinc_kernel'].cuda())

            # clamp and round
            lq = torch.clamp((x_source * 255.0).round(), 0, 255) / 255.
            lq_img = lq.contiguous()


            generated = self.generator(lq_img, kp_source=kp_source, kp_driving=kp_driving)
        else:
            generated = self.generator(x['source'], kp_source=kp_source, kp_driving=kp_driving)
        generated.update({'kp_source': kp_source, 'kp_driving': kp_driving})

        loss_values = {}

        pyramide_real = self.pyramid(x['driving'])
        pyramide_generated = self.pyramid(generated['prediction'])

        if sum(self.loss_weights['perceptual']) != 0:
            value_total = 0
            for scale in self.scales:
                x_vgg = self.vgg(pyramide_generated['prediction_' + str(scale)])
                y_vgg = self.vgg(pyramide_real['prediction_' + str(scale)])

                for i, weight in enumerate(self.loss_weights['perceptual']):
                    value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean()
                    value_total += self.loss_weights['perceptual'][i] * value
            loss_values['perceptual'] = value_total
        
        if self.loss_weights['generator_gan'] != 0:
            discriminator_maps_generated = self.discriminator(pyramide_generated)
            discriminator_maps_real = self.discriminator(pyramide_real)
            value_total = 0
            for scale in self.disc_scales:
                key = 'prediction_map_%s' % scale
                if self.train_params['gan_mode'] == 'hinge':
                    value = -torch.mean(discriminator_maps_generated[key])
                elif self.train_params['gan_mode'] == 'ls':
                    value = ((1 - discriminator_maps_generated[key]) ** 2).mean()
                else:
                    raise ValueError('Unexpected gan_mode {}'.format(self.train_params['gan_mode']))

                value_total += self.loss_weights['generator_gan'] * value
            loss_values['gen_gan'] = value_total

            if sum(self.loss_weights['feature_matching']) != 0:
                value_total = 0
                for scale in self.disc_scales:
                    key = 'feature_maps_%s' % scale
                    for i, (a, b) in enumerate(zip(discriminator_maps_real[key], discriminator_maps_generated[key])):
                        if self.loss_weights['feature_matching'][i] == 0:
                            continue
                        value = torch.abs(a - b).mean()
                        value_total += self.loss_weights['feature_matching'][i] * value
                    loss_values['feature_matching'] = value_total

        if (self.loss_weights['equivariance_value'] + self.loss_weights['equivariance_jacobian']) != 0:
            transform = Transform(x['driving'].shape[0], **self.train_params['transform_params'])
            transformed_frame = transform.transform_frame(x['driving'])

            transformed_he_driving = self.he_estimator(transformed_frame)

            transformed_kp = keypoint_transformation(kp_canonical, transformed_he_driving, self.estimate_jacobian)

            generated['transformed_frame'] = transformed_frame
            generated['transformed_kp'] = transformed_kp

            ## Value loss part
            if self.loss_weights['equivariance_value'] != 0:
                # project 3d -> 2d
                kp_driving_2d = kp_driving['value'][:, :, :2]
                transformed_kp_2d = transformed_kp['value'][:, :, :2]
                value = torch.abs(kp_driving_2d - transform.warp_coordinates(transformed_kp_2d)).mean()
                loss_values['equivariance_value'] = self.loss_weights['equivariance_value'] * value

            ## jacobian loss part
            if self.loss_weights['equivariance_jacobian'] != 0:
                # project 3d -> 2d
                transformed_kp_2d = transformed_kp['value'][:, :, :2]
                transformed_jacobian_2d = transformed_kp['jacobian'][:, :, :2, :2]
                jacobian_transformed = torch.matmul(transform.jacobian(transformed_kp_2d),
                                                    transformed_jacobian_2d)
                
                jacobian_2d = kp_driving['jacobian'][:, :, :2, :2]
                normed_driving = torch.inverse(jacobian_2d)
                normed_transformed = jacobian_transformed
                value = torch.matmul(normed_driving, normed_transformed)

                eye = torch.eye(2).view(1, 1, 2, 2).type(value.type())

                value = torch.abs(eye - value).mean()
                loss_values['equivariance_jacobian'] = self.loss_weights['equivariance_jacobian'] * value

        if self.loss_weights['keypoint'] != 0:
            # print(kp_driving['value'].shape)     # (bs, k, 3)
            value_total = 0
            for i in range(kp_driving['value'].shape[1]):
                for j in range(kp_driving['value'].shape[1]):
                    dist = F.pairwise_distance(kp_driving['value'][:, i, :], kp_driving['value'][:, j, :], p=2, keepdim=True) ** 2
                    dist = 0.1 - dist      # set Dt = 0.1
                    dd = torch.gt(dist, 0) 
                    value = (dist * dd).mean()
                    value_total += value

            kp_mean_depth = kp_driving['value'][:, :, -1].mean(-1)
            value_depth = torch.abs(kp_mean_depth - 0.33).mean()          # set Zt = 0.33

            value_total += value_depth
            loss_values['keypoint'] = self.loss_weights['keypoint'] * value_total

        if self.loss_weights['headpose'] != 0:
            transform_hopenet =  transforms.Compose([transforms.Resize(size=(224, 224)),
                                                     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
            driving_224 = transform_hopenet(x['driving'])

            yaw_gt, pitch_gt, roll_gt = self.hopenet(driving_224)
            yaw_gt = headpose_pred_to_degree(yaw_gt)
            pitch_gt = headpose_pred_to_degree(pitch_gt)
            roll_gt = headpose_pred_to_degree(roll_gt)

            yaw, pitch, roll = he_driving['yaw'], he_driving['pitch'], he_driving['roll']
            yaw = headpose_pred_to_degree(yaw)
            pitch = headpose_pred_to_degree(pitch)
            roll = headpose_pred_to_degree(roll)

            value = torch.abs(yaw - yaw_gt).mean() + torch.abs(pitch - pitch_gt).mean() + torch.abs(roll - roll_gt).mean()
            loss_values['headpose'] = self.loss_weights['headpose'] * value

        if self.loss_weights['expression'] != 0:
            value = torch.norm(he_driving['exp'], p=1, dim=-1).mean()
            loss_values['expression'] = self.loss_weights['expression'] * value

        loss_values['reconstruction'] = self.loss_weights['reconstruction'] * self.L1(generated['prediction'], x['driving'])
        
        return loss_values, generated


class DiscriminatorFullModel(torch.nn.Module):
    """
    Merge all discriminator related updates into single model for better multi-gpu usage
    """

    def __init__(self, kp_extractor, generator, discriminator, train_params):
        super(DiscriminatorFullModel, self).__init__()
        self.kp_extractor = kp_extractor
        self.generator = generator
        self.discriminator = discriminator
        self.train_params = train_params
        self.scales = self.discriminator.scales
        self.pyramid = ImagePyramide(self.scales, generator.image_channel)
        if torch.cuda.is_available():
            self.pyramid = self.pyramid.cuda()

        self.loss_weights = train_params['loss_weights']

        self.zero_tensor = None

    def get_zero_tensor(self, input):
        if self.zero_tensor is None:
            self.zero_tensor = torch.FloatTensor(1).fill_(0).cuda()
            self.zero_tensor.requires_grad_(False)
        return self.zero_tensor.expand_as(input)

    def forward(self, x, generated):
        pyramide_real = self.pyramid(x['driving'])
        pyramide_generated = self.pyramid(generated['prediction'].detach())

        discriminator_maps_generated = self.discriminator(pyramide_generated)
        discriminator_maps_real = self.discriminator(pyramide_real)

        loss_values = {}
        value_total = 0
        for scale in self.scales:
            key = 'prediction_map_%s' % scale
            if self.train_params['gan_mode'] == 'hinge':
                value = -torch.mean(torch.min(discriminator_maps_real[key]-1, self.get_zero_tensor(discriminator_maps_real[key]))) - torch.mean(torch.min(-discriminator_maps_generated[key]-1, self.get_zero_tensor(discriminator_maps_generated[key])))
            elif self.train_params['gan_mode'] == 'ls':
                value = ((1 - discriminator_maps_real[key]) ** 2 + discriminator_maps_generated[key] ** 2).mean()
            else:
                raise ValueError('Unexpected gan_mode {}'.format(self.train_params['gan_mode']))

            value_total += self.loss_weights['discriminator_gan'] * value
        loss_values['disc_gan'] = value_total

        return loss_values