File size: 10,851 Bytes
ba32b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#CUDA_VISIBLE_DEVICES=1 python run.py --config log_TH1K/finetune-th1k-spade.yml --device_ids 0 --checkpoint log_TH1K/00000001-checkpoint.pth.tar
import os
from skimage import io, img_as_float32
from skimage.color import gray2rgb
from sklearn.model_selection import train_test_split
from imageio import mimread
from functools import partial
from skimage.transform import resize


import torch
import random
import numpy as np
from torch.utils.data import Dataset
import pandas as pd
from augmentation import AllAugmentationTransform
import glob
import math

import pickle
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor



def read_video(name, frame_shape):
    """
    Read video which can be:
      - an image of concatenated frames
      - '.mp4' and'.gif'
      - folder with videos
    """
    
    if os.path.isdir(name):
        
        frames = sorted(os.listdir(name))
        num_frames = len(frames)
        video_array = np.array(
            [img_as_float32(io.imread(os.path.join(name, frames[idx]))) for idx in range(num_frames)])
    elif name.lower().endswith('.png') or name.lower().endswith('.jpg'):
        image = io.imread(name)

        if len(image.shape) == 2 or image.shape[2] == 1:
            image = gray2rgb(image)

        if image.shape[2] == 4:
            image = image[..., :3]

        image = img_as_float32(image)

        video_array = np.moveaxis(image, 1, 0)

        video_array = video_array.reshape((-1,) + frame_shape)
        video_array = np.moveaxis(video_array, 1, 2)
        
    elif name.lower().endswith('.gif') or name.lower().endswith('.mp4') or name.lower().endswith('.mov'):
        video = np.array(mimread(name))
        if len(video.shape) == 3:
            video = np.array([gray2rgb(frame) for frame in video])
        if video.shape[-1] == 4:
            video = video[..., :3]
        video_array = img_as_float32(video)
    else:
        raise Exception("Unknown file extensions  %s" % name)

    return video_array


class FramesDataset(Dataset):
    """
    Dataset of videos, each video can be represented as:
      - an image of concatenated frames
      - '.mp4' or '.gif'
      - folder with all frames
    """

    def __init__(self, root_dir, frame_shape=(256, 256, 3), id_sampling=False, is_train=True,
                 random_seed=0, pairs_list=None, augmentation_params=None):
        self.root_dir = root_dir
        
        tmp_file = open(root_dir + 'train_file_list.pickle','rb')
        self.train_files_list = pickle.load(tmp_file)
        
        self.videos = os.listdir(root_dir)
        self.frame_shape = tuple(frame_shape)
        self.pairs_list = pairs_list
        self.id_sampling = id_sampling
        if os.path.exists(os.path.join(root_dir, 'train')):
            assert os.path.exists(os.path.join(root_dir, 'test'))
            print("Use predefined train-test split.")
            if id_sampling:
                # train_videos = {os.path.basename(video).split('#')[0] for video in
                #                 os.listdir(os.path.join(root_dir, 'train'))}
                # train_videos = list(train_videos)
                train_videos = list(self.train_files_list.keys())
            else:
                train_videos = os.listdir(os.path.join(root_dir, 'train'))
            test_videos = os.listdir(os.path.join(root_dir, 'test'))
            self.root_dir = os.path.join(self.root_dir, 'train' if is_train else 'test')
        else:
            print("Use random train-test split.")
            train_videos, test_videos = train_test_split(self.videos, random_state=random_seed, test_size=0.2)

        if is_train:
            self.videos = train_videos
        else:
            self.videos = test_videos

        self.is_train = is_train

        if self.is_train:
            self.transform = AllAugmentationTransform(**augmentation_params)

            #### for degradation ####
            

            self.kernel_range = [2 * v + 1 for v in range(1,3)]
            self.pulse_tensor = torch.zeros(11, 11).float()
            self.pulse_tensor[5, 5] = 1

            self.resize_range = [0.15, 1.5]

            # blur settings for the first degradation
            self.blur_kernel_size = 7
            self.kernel_list = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
            self.kernel_prob = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]  # a list for each kernel probability
            self.blur_sigma = [0.1, 0.5]
            self.betag_range = [0.2, 1] # betag used in generalized Gaussian blur kernels
            self.betap_range = [0.5, 1.2] # betap used in plateau blur kernels
            self.sinc_prob = 0.1  # the probability for sinc filters

            # blur settings for the second degradation
            self.blur_kernel_size2 = 7
            self.kernel_list2 = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
            self.kernel_prob2 = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
            self.blur_sigma2 = [0.1, 0.5]
            self.betag_range2 = [0.2, 1]
            self.betap_range2 = [1, 1.2]
            self.sinc_prob2 = 0.1
        else:
            self.transform = None

    def __len__(self):
        return len(self.videos)

    def __getitem__(self, idx):
        if self.is_train and self.id_sampling:
            # name = self.videos[idx]
            # path = np.random.choice(glob.glob(os.path.join(self.root_dir, name + '*.mp4')))
            name = self.videos[idx]
            choice_list = self.train_files_list[name]
            # if len(choice_list) == 0:
            #     name = self.videos[idx-1]
            #     choice_list = self.train_files_list[name]
            paths = np.random.choice(choice_list)
        else:
            name = self.videos[idx]
            paths = os.path.join(self.root_dir, name)

        video_name = os.path.basename(paths)
        if self.is_train and os.path.isdir(paths):
            frames = os.listdir(paths)
            num_frames = len(frames)
            frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2))


            if self.frame_shape is not None:
                resize_fn = partial(resize, output_shape=self.frame_shape)
            else:
                resize_fn = img_as_float32
            video_array = [resize_fn(img_as_float32(io.imread(paths + '/' + '%06d.jpg'%(idx) ))) for idx in frame_idx]


        else:
            video_array = read_video(paths, frame_shape=self.frame_shape)
            num_frames = len(video_array)
            frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2)) if self.is_train else range(
                num_frames)
            video_array = video_array[frame_idx]

        if self.transform is not None:
            video_array = self.transform(video_array)

        out = {}
        if self.is_train:
            source = np.array(video_array[0], dtype='float32')
            driving = np.array(video_array[1], dtype='float32')
            out['driving'] = driving.transpose((2, 0, 1))
            out['source'] = source.transpose((2, 0, 1))

            # if self.degradation:
            ############ run degradation ############
            # ---- Generate kernels (used in the first degradation) ---- #
            kernel_size = random.choice(self.kernel_range)
            if np.random.uniform() <  0.1:
                # this sinc filter setting is for kernels ranging from [7, 21]
                if kernel_size < 11:
                    omega_c = np.random.uniform(np.pi / 3, np.pi)
                else:
                    omega_c = np.random.uniform(np.pi / 5, np.pi)
                kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
            else:
                kernel = random_mixed_kernels(
                    self.kernel_list,
                    self.kernel_prob,
                    kernel_size,
                    self.blur_sigma,
                    self.blur_sigma, [-math.pi, math.pi],
                    self.betag_range,
                    self.betap_range,
                    noise_range=None)
            # pad kernel
            pad_size = (21 - kernel_size) // 2
            kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
            

            # ----- Generate kernels (used in the second degradation) ---- #
            kernel_size = random.choice(self.kernel_range)
            if np.random.uniform() < 0.1:
                if kernel_size < 13:
                    omega_c = np.random.uniform(np.pi / 3, np.pi)
                else:
                    omega_c = np.random.uniform(np.pi / 5, np.pi)
                kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
            else:
                kernel2 = random_mixed_kernels(
                    self.kernel_list2,
                    self.kernel_prob2,
                    kernel_size,
                    self.blur_sigma2,
                    self.blur_sigma2, [-math.pi, math.pi],
                    self.betag_range2,
                    self.betap_range2,
                    noise_range=None)
            # pad kernel
            pad_size = (21 - kernel_size) // 2
            kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
            
            # ---- the final sinc kernel ---- #
            if np.random.uniform() < 0.8:
                kernel_size = random.choice(self.kernel_range)
                omega_c = np.random.uniform(np.pi / 3, np.pi)
                sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=11)
                sinc_kernel = torch.FloatTensor(sinc_kernel)
            else:
                sinc_kernel = self.pulse_tensor

            # BGR to RGB, HWC to CHW, numpy to tensor
            # img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
            kernel = torch.FloatTensor(kernel)
            kernel2 = torch.FloatTensor(kernel2)
            #########################################

            out['kernel'] = kernel
            out['kernel2']= kernel2
            out['sinc_kernel'] = sinc_kernel

        else:
            video = np.array(video_array, dtype='float32')
            out['video'] = video.transpose((3, 0, 1, 2))

        out['name'] = video_name

        return out


class DatasetRepeater(Dataset):
    """
    Pass several times over the same dataset for better i/o performance
    """

    def __init__(self, dataset, num_repeats=100):
        self.dataset = dataset
        self.num_repeats = num_repeats

    def __len__(self):
        return self.num_repeats * self.dataset.__len__()

    def __getitem__(self, idx):
        return self.dataset[idx % self.dataset.__len__()]