File size: 5,838 Bytes
1f65586 39a01a7 1f65586 5addcd6 1f65586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TupleInf Open IE Dataset"""
import os
import datasets
_CITATION = """\
@article{Khot2017AnsweringCQ,
title={Answering Complex Questions Using Open Information Extraction},
author={Tushar Khot and A. Sabharwal and Peter Clark},
journal={ArXiv},
year={2017},
volume={abs/1704.05572}
}
"""
_DESCRIPTION = """\
The TupleInf Open IE dataset contains Open IE tuples extracted from 263K sentences that were used by the solver \
in “Answering Complex Questions Using Open Information Extraction” (referred as Tuple KB, T). \
These sentences were collected from a large Web corpus using training questions from 4th and 8th grade as queries. \
This dataset contains 156K sentences collected for 4th grade questions and 107K sentences for 8th grade questions. \
Each sentence is followed by the Open IE v4 tuples using their simple format.
"""
_HOMEPAGE = "https://allenai.org/data/tuple-ie"
_URL = "https://ai2-public-datasets.s3.amazonaws.com/tuple-ie/TupleInfKB.zip"
_DOMAIN_FILES = {"4th_grade": "4thGradeOpenIE.txt", "8th_grade": "8thGradeOpenIE.txt"}
class TupleIEConfig(datasets.BuilderConfig):
"""BuilderConfig for TupleIE"""
def __init__(self, *args, domains=None, **kwargs):
super().__init__(*args, **kwargs)
self.domains = domains
class TupleIE(datasets.GeneratorBasedBuilder):
"""TupleInf Open IE Dataset"""
BUILDER_CONFIGS = [
TupleIEConfig(
name="all",
domains=list(_DOMAIN_FILES.keys()),
description="collected using training questions from 4th and 8th grade as queries.",
)
] + [
TupleIEConfig(
name=name, domains=[name], description=f"collected using training questions from {name} as queries."
)
for name in _DOMAIN_FILES.keys()
]
BUILDER_CONFIG_CLASS = TupleIEConfig
DEFAULT_CONFIG_NAME = "all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence": datasets.Value("string"),
"tuples": datasets.features.Sequence(
{
"score": datasets.Value("float"),
"tuple_text": datasets.Value("string"),
"context": datasets.Value("string"),
"arg1": datasets.Value("string"),
"rel": datasets.Value("string"),
"arg2s": datasets.features.Sequence(datasets.Value("string")),
}
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = os.path.join(dl_manager.download_and_extract(_URL), "TupleInfKB")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir},
)
]
def _generate_examples(self, data_dir):
"""Yields examples."""
id_ = -1
for domain in self.config.domains:
with open(os.path.join(data_dir, _DOMAIN_FILES[domain]), encoding="utf-8") as f:
all_text = f.read()
samples = all_text.split("\n\n")
for sample in samples:
rows = sample.split("\n")
item = {"sentence": rows[0], "tuples": []}
tuple_lines = rows[1:]
for tuple_line in tuple_lines:
score, tuple_text = tuple_line.split(" ", 1)
context, arg1, rel, arg2s = self._decode_tuple_text(tuple_text)
item["tuples"].append(
{
"score": score,
"tuple_text": tuple_text,
"context": context,
"arg1": arg1,
"rel": rel,
"arg2s": arg2s,
}
)
id_ += 1
yield id_, item
def _decode_tuple_text(self, tuple_text):
"""Decompose the tuple text into arguments and relations
Args:
tuple_text (str): Format of extraction text:
.. code-block::
{Context(<context>):}(<arg1>; <rel>; {[L|T]:}<arg2_1>; {[L|T]:}<arg2_2>; ...)
.. note::
* ``{}`` means one can be optionally appear
* ``[L|T]`` means ``L`` or ``T``
* ``L`` means spatial/location argument
* ``T`` means temporal argument
* We can have multiple arg2s
"""
context = ""
arg1 = ""
rel = ""
arg2s = []
if tuple_text.startswith("Context("):
context, tuple_text = tuple_text.split(":", 1)
context = context[len("Context(") : -1]
args = tuple_text[1:-1].split("; ")
arg1, rel = args[:2]
arg2s = args[2:]
return context, arg1, rel, arg2s
|