File size: 6,231 Bytes
9b97275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5e82b
9b97275
 
 
8f5e82b
 
 
 
9b97275
 
 
8f5e82b
9b97275
 
 
8f5e82b
 
 
 
9b97275
 
 
8f5e82b
9b97275
8f5e82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b97275
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""TODO(scicite): Add a description here."""


import json

import datasets


_CITATION = """
@InProceedings{Cohan2019Structural,
  author={Arman Cohan and Waleed Ammar and Madeleine Van Zuylen and Field Cady},
  title={Structural Scaffolds for Citation Intent Classification in Scientific Publications},
  booktitle={NAACL},
  year={2019}
}
"""

_DESCRIPTION = """
This is a dataset for classifying citation intents in academic papers.
The main citation intent label for each Json object is specified with the label
key while the citation context is specified in with a context key. Example:
{
 'string': 'In chacma baboons, male-infant relationships can be linked to both
    formation of friendships and paternity success [30,31].'
 'sectionName': 'Introduction',
 'label': 'background',
 'citingPaperId': '7a6b2d4b405439',
 'citedPaperId': '9d1abadc55b5e0',
 ...
 }
You may obtain the full information about the paper using the provided paper ids
with the Semantic Scholar API (https://api.semanticscholar.org/).
The labels are:
Method, Background, Result
"""

_SOURCE_NAMES = ["properNoun", "andPhrase", "acronym", "etAlPhrase", "explicit", "acronymParen", "nan"]


class Scicite(datasets.GeneratorBasedBuilder):
    """This is a dataset for classifying citation intents in academic papers."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "string": datasets.Value("string"),
                    "sectionName": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=["method", "background", "result"]),
                    "citingPaperId": datasets.Value("string"),
                    "citedPaperId": datasets.Value("string"),
                    "excerpt_index": datasets.Value("int32"),
                    "isKeyCitation": datasets.Value("bool"),
                    "label2": datasets.features.ClassLabel(
                        names=["supportive", "not_supportive", "cant_determine", "none"]
                    ),
                    "citeEnd": datasets.Value("int64"),
                    "citeStart": datasets.Value("int64"),
                    "source": datasets.features.ClassLabel(names=_SOURCE_NAMES),
                    "label_confidence": datasets.Value("float32"),
                    "label2_confidence": datasets.Value("float32"),
                    "id": datasets.Value("string"),
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://github.com/allenai/scicite",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        archive = dl_manager.download("https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": "/".join(["scicite", "train.jsonl"]),
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": "/".join(["scicite", "dev.jsonl"]), "files": dl_manager.iter_archive(archive)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": "/".join(["scicite", "test.jsonl"]),
                    "files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, filepath, files):
        """Yields examples."""
        for path, f in files:
            if path == filepath:
                unique_ids = {}
                for line in f:
                    d = json.loads(line.decode("utf-8"))
                    unique_id = str(d["unique_id"])
                    if unique_id in unique_ids:
                        continue
                    unique_ids[unique_id] = True
                    yield unique_id, {
                        "string": d["string"],
                        "label": str(d["label"]),
                        "sectionName": str(d["sectionName"]),
                        "citingPaperId": str(d["citingPaperId"]),
                        "citedPaperId": str(d["citedPaperId"]),
                        "excerpt_index": int(d["excerpt_index"]),
                        "isKeyCitation": bool(d["isKeyCitation"]),
                        "label2": str(d.get("label2", "none")),
                        "citeEnd": _safe_int(d["citeEnd"]),
                        "citeStart": _safe_int(d["citeStart"]),
                        "source": str(d["source"]),
                        "label_confidence": float(d.get("label_confidence", 0.0)),
                        "label2_confidence": float(d.get("label2_confidence", 0.0)),
                        "id": str(d["id"]),
                    }
                break


def _safe_int(a):
    try:
        # skip NaNs
        return int(a)
    except ValueError:
        return -1