File size: 7,483 Bytes
e9c1607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""TODO(quartz): Add a description here."""


import json
import os

import datasets


# TODO(quartz): BibTeX citation
_CITATION = """\
@InProceedings{quartz,
  author = {Oyvind Tafjord and Matt Gardner and Kevin Lin and Peter Clark},
  title = {"QUARTZ: An Open-Domain Dataset of Qualitative Relationship
Questions"},
  year = {"2019"},
}
"""

# TODO(quartz):
_DESCRIPTION = """\
QuaRTz is a crowdsourced dataset of 3864 multiple-choice questions about open domain qualitative relationships. Each
question is paired with one of 405 different background sentences (sometimes short paragraphs).
The QuaRTz dataset V1 contains 3864 questions about open domain qualitative relationships. Each question is paired with
one of 405 different background sentences (sometimes short paragraphs).
The dataset is split into train (2696), dev (384) and test (784). A background sentence will only appear in a single split.
"""

_URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/quartz-dataset-v1-aug2019.zip"


class Quartz(datasets.GeneratorBasedBuilder):
    """TODO(quartz): Short description of my dataset."""

    # TODO(quartz): Set up version.
    VERSION = datasets.Version("0.1.0")

    def _info(self):
        # TODO(quartz): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    # These are the features of your dataset like images, labels ...
                    "id": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "choices": datasets.features.Sequence(
                        {"text": datasets.Value("string"), "label": datasets.Value("string")}
                    ),
                    "answerKey": datasets.Value("string"),
                    "para": datasets.Value("string"),
                    "para_id": datasets.Value("string"),
                    "para_anno": {
                        "effect_prop": datasets.Value("string"),
                        "cause_dir_str": datasets.Value("string"),
                        "effect_dir_str": datasets.Value("string"),
                        "cause_dir_sign": datasets.Value("string"),
                        "effect_dir_sign": datasets.Value("string"),
                        "cause_prop": datasets.Value("string"),
                    },
                    "question_anno": {
                        "more_effect_dir": datasets.Value("string"),
                        "less_effect_dir": datasets.Value("string"),
                        "less_cause_prop": datasets.Value("string"),
                        "more_effect_prop": datasets.Value("string"),
                        "less_effect_prop": datasets.Value("string"),
                        "less_cause_dir": datasets.Value("string"),
                    },
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://allenai.org/data/quartz",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(quartz): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        dl_dir = dl_manager.download_and_extract(_URL)
        data_dir = os.path.join(dl_dir, "quartz-dataset-v1-aug2019")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl")},
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # TODO(quartz): Yields (key, example) tuples from the dataset
        with open(filepath, encoding="utf-8") as f:
            for row in f:
                data = json.loads(row)
                id_ = data["id"]
                question = data["question"]["stem"]
                answerKey = data["answerKey"]
                choices = data["question"]["choices"]
                choice_text = [choice["text"] for choice in choices]
                choice_label = [choice["label"] for choice in choices]
                para_id = data["para_id"]
                para = data["para"]
                para_ano = data["para_anno"]
                effect_prop = para_ano.get("effect_prop", "")
                cause_dir_str = para_ano.get("cause_dir_str", "")
                effect_dir_str = para_ano.get("effect_dir_str", "")
                cause_dir_sign = para_ano.get("cause_dir_sign", "")
                effect_dir_sign = para_ano.get("effect_dir_sign", "")
                cause_prop = para_ano.get("cause_prop", "")
                question_anno = data["question_anno"]
                more_effect_dir = "" if not question_anno else question_anno.get("more_effect_dir", "")
                less_effect_dir = "" if not question_anno else question_anno.get("less_effect_dir", "")
                less_cause_prop = "" if not question_anno else question_anno.get("less_cause_prop", "")
                more_effect_prop = "" if not question_anno else question_anno.get("more_effect_prop", "")
                less_effect_prop = "" if not question_anno else question_anno.get("less_effect_prop", "")
                less_cause_dir = "" if not question_anno else question_anno.get("less_effect_prop", "")
                yield id_, {
                    "id": id_,
                    "question": question,
                    "choices": {"text": choice_text, "label": choice_label},
                    "answerKey": answerKey,
                    "para": para,
                    "para_id": para_id,
                    "para_anno": {
                        "effect_prop": effect_prop,
                        "cause_dir_str": cause_dir_str,
                        "effect_dir_str": effect_dir_str,
                        "cause_dir_sign": cause_dir_sign,
                        "effect_dir_sign": effect_dir_sign,
                        "cause_prop": cause_prop,
                    },
                    "question_anno": {
                        "more_effect_dir": more_effect_dir,
                        "less_effect_dir": less_effect_dir,
                        "less_cause_prop": less_cause_prop,
                        "more_effect_prop": more_effect_prop,
                        "less_effect_prop": less_effect_prop,
                        "less_cause_dir": less_cause_dir,
                    },
                }