Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 5,950 Bytes
3234a60
0fdbe46
3234a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fdbe46
 
 
 
 
3234a60
0fdbe46
3234a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fdbe46
 
 
 
 
 
3234a60
 
 
 
 
 
 
 
 
 
 
 
 
0fdbe46
 
 
3234a60
 
 
 
0fdbe46
 
 
3234a60
 
 
0fdbe46
 
 
 
 
 
 
 
 
3234a60
 
 
7114a9c
3234a60
 
7114a9c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# coding=utf-8
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Qasper: A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers."""


import json

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{Dasigi2021ADO,
  title={A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers},
  author={Pradeep Dasigi and Kyle Lo and Iz Beltagy and Arman Cohan and Noah A. Smith and Matt Gardner},
  year={2021}
}
"""
_LICENSE = "CC BY 4.0"
_DESCRIPTION = """\
A dataset containing 1585 papers with 5049 information-seeking questions asked by regular readers of NLP papers, and answered by a separate set of NLP practitioners.
"""

_HOMEPAGE = "https://allenai.org/data/qasper"
_URL_TRAIN_DEV = "https://qasper-dataset.s3.us-west-2.amazonaws.com/qasper-train-dev-v0.3.tgz"
_URL_TEST = "https://qasper-dataset.s3.us-west-2.amazonaws.com/qasper-test-and-evaluator-v0.3.tgz"
_DATA_FILES = {"train": "qasper-train-v0.3.json",
               "dev": "qasper-dev-v0.3.json",
               "test": "qasper-test-v0.3.json"}

_VERSION = "0.3.0"


class Qasper(datasets.GeneratorBasedBuilder):
    """Qasper: A Dataset of Information-Seeking Q&A Anchored in Research Papers."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="qasper",
            version=datasets.Version(_VERSION),
            description=_DESCRIPTION,
        )
    ]

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "title": datasets.Value("string"),
                "abstract": datasets.Value("string"),
                "full_text": datasets.features.Sequence(
                    {
                        "section_name": datasets.Value("string"),
                        "paragraphs": [datasets.Value("string")],
                    }
                ),
                "qas": datasets.features.Sequence(
                    {
                        "question": datasets.Value("string"),
                        "question_id": datasets.Value("string"),
                        "nlp_background": datasets.Value("string"),
                        "topic_background": datasets.Value("string"),
                        "paper_read": datasets.Value("string"),
                        "search_query": datasets.Value("string"),
                        "question_writer": datasets.Value("string"),
                        "answers": datasets.features.Sequence(
                            {
                                "answer": {
                                    "unanswerable": datasets.Value("bool"),
                                    "extractive_spans": datasets.features.Sequence(datasets.Value("string")),
                                    "yes_no": datasets.Value("bool"),
                                    "free_form_answer": datasets.Value("string"),
                                    "evidence": datasets.features.Sequence(datasets.Value("string")),
                                    "highlighted_evidence": datasets.features.Sequence(datasets.Value("string")),
                                },
                                "annotation_id": datasets.Value("string"),
                                "worker_id": datasets.Value("string"),
                            }
                        ),
                    }
                ),
                "figures_and_tables": datasets.features.Sequence(
                    {
                        "caption": datasets.Value("string"),
                        "file": datasets.Value("string"),
                    }
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive_train_dev, archive_test = dl_manager.download((
            _URL_TRAIN_DEV, _URL_TEST)
        )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": _DATA_FILES["train"],
                    "files": dl_manager.iter_archive(archive_train_dev)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": _DATA_FILES["dev"],
                    "files": dl_manager.iter_archive(archive_train_dev)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": _DATA_FILES["test"],
                    "files": dl_manager.iter_archive(archive_test)},
            ),
        ]

    def _generate_examples(self, filepath, files):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        for path, f in files:
            if path == filepath:
                qasper = json.loads(f.read().decode("utf-8"))
                for id_ in qasper:
                    qasper[id_]["id"] = id_
                    yield id_, qasper[id_]
                break