Datasets:
Tasks:
Summarization
Modalities:
Text
Formats:
parquet
Sub-tasks:
news-articles-summarization
Languages:
English
Size:
10K - 100K
License:
File size: 1,355 Bytes
945b63c cf58409 0d22e83 cf58409 a85ba6a 0d22e83 67851d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- other
multilinguality:
- monolingual
pretty_name: Multi-News
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- summarization
task_ids:
- news-articles-summarization
paperswithcode_id: multi-news
train-eval-index:
- config: default
task: summarization
task_id: summarization
splits:
train_split: train
eval_split: test
col_mapping:
document: text
summary: target
metrics:
- type: rouge
name: Rouge
---
This is a copy of the [Multi-News](https://huggingface.co/datasets/multi_news) dataset, except the input source documents of its `test` split have been replaced by a __sparse__ retriever. The retrieval pipeline used:
- __query__: The `summary` field of each example
- __corpus__: The union of all documents in the `train`, `validation` and `test` splits
- __retriever__: BM25 via [PyTerrier](https://pyterrier.readthedocs.io/en/latest/) with default settings
- __top-k strategy__: `"oracle"`, i.e. the number of documents retrieved, `k`, is set as the original number of input documents for each example
Retrieval results on the `test` set:
|ndcg | recall@100 | recall@1000 | Rprec |
| ----------- | ----------- | ----------- | ----------- |
| 0.8532 | 0.8775 | 0.8964 | 0.748 | |