Datasets:

Languages:
English
ArXiv:
License:
File size: 7,005 Bytes
8dfe801
18e74f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dfe801
18e74f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5130967
 
 
 
34a633b
 
 
 
 
 
 
a2a1fe4
18e74f1
34a633b
 
 
 
18e74f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0586b
18e74f1
 
 
 
 
 
 
8e0586b
 
18e74f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0586b
18e74f1
 
 
 
 
 
 
 
8e0586b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
annotations_creators:
- expert-generated
language:
- en
language_creators:
- found
license:
- odc-by
multilinguality:
- monolingual
pretty_name: Multi-LexSum
size_categories:
- 1K<n<10K
- 10K<n<100K
source_datasets:
- original
tags: []
task_categories:
- summarization
task_ids: []
---

# Dataset Card for Multi-LexSum
## Table of Contents
- [Dataset Card for Multi-LexSum](#dataset-card-for-multi-lexsum)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Languages](#languages)
  - [Dataset](#dataset)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Sheet (Datasheet)](#dataset-sheet-datasheet)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
  - [Release History](#release-history)

## Dataset Description

- **Homepage:** https://multilexsum.github.io
- **Repository:** https://github.com/multilexsum/dataset
- **Paper:** https://arxiv.org/abs/2206.10883

<p>
<a href="https://multilexsum.github.io" style="display: inline-block;">
<img src="https://img.shields.io/badge/-homepage-informational.svg?logo=jekyll" title="Multi-LexSum Paper" style="margin-top: 0.25rem; margin-bottom: 0.25rem"></a>  
<a href="https://github.com/multilexsum/dataset" style="display: inline-block;">
<img src="https://img.shields.io/badge/-multilexsum-lightgrey.svg?logo=github" title="Multi-LexSum Github Repo" style="margin-top: 0.25rem; margin-bottom: 0.25rem"></a> 
<a href="https://arxiv.org/abs/2206.10883" style="display: inline-block;">
<img src="https://img.shields.io/badge/NeurIPS-2022-9cf" title="Multi-LexSum is accepted in NeurIPS 2022" style="margin-top: 0.25rem; margin-bottom: 0.25rem"></a>
</p>

### Talk @ NeurIPS 2022 

[![Watch the video](https://img.youtube.com/vi/C-fwW_ZhkE8/0.jpg)](https://youtu.be/C-fwW_ZhkE8)


### Dataset Summary

The Multi-LexSum dataset is a collection of 9,280 such legal case summaries. Multi-LexSum is distinct from other datasets in its **multiple target summaries, each at a different granularity** (ranging from one-sentence “extreme” summaries to multi-paragraph narrations of over five hundred words). It presents a challenging multi-document summarization task given **the long length of the source documents**, often exceeding two hundred pages per case. Unlike other summarization datasets that are (semi-)automatically curated, Multi-LexSum consists of **expert-authored summaries**: the experts—lawyers and law students—are trained to follow carefully created guidelines, and their work is reviewed by an additional expert to ensure quality.

### Languages

English

## Dataset 

### Data Fields

The dataset contains a list of instances (cases); each instance contains the following data: 

|         Field |                                                                      Description |
| ------------: | -------------------------------------------------------------------------------: |
|            id |                                                              `(str)` The case ID |
|       sources | `(List[str])` A list of strings for the text extracted from the source documents |
|  summary/long |                         `(str)` The long (multi-paragraph) summary for this case |
| summary/short |                `(Optional[str])` The short (one-paragraph) summary for this case |
|  summary/tiny |                  `(Optional[str])` The tiny (one-sentence) summary for this case |

Please check the exemplar usage below for loading the data: 

```python
from datasets import load_dataset

multi_lexsum = load_dataset("allenai/multi_lexsum", name="v20230518")
# Download multi_lexsum locally and load it as a Dataset object 

example = multi_lexsum["validation"][0] # The first instance of the dev set 
example["sources"] # A list of source document text for the case

for sum_len in ["long", "short", "tiny"]:
    print(example["summary/" + sum_len]) # Summaries of three lengths

  print(example['case_metadata']) # The corresponding metadata for a case in a dict 
```

### Data Splits

|             | Instances | Source Documents (D) | Long Summaries (L) | Short Summaries (S) | Tiny Summaries (T) | Total Summaries |
| ----------: | --------: | -------------------: | -----------------: | ------------------: | -----------------: | --------------: |
| Train (70%) |     3,177 |               28,557 |              3,177 |               2,210 |              1,130 |           6,517 |
|  Test (20%) |       908 |                7,428 |                908 |                 616 |                312 |           1,836 |
|   Dev (10%) |       454 |                4,134 |                454 |                 312 |                161 |             927 |


## Dataset Sheet (Datasheet)

Please check our [dataset sheet](https://multilexsum.github.io/datasheet) for details regarding dataset creation, source data, annotation, and considerations for the usage. 

## Additional Information

### Dataset Curators

The dataset is created by the collaboration between Civil Rights Litigation Clearinghouse (CRLC, from University of Michigan) and Allen Institute for AI. Multi-LexSum builds on the dataset used and posted by the Clearinghouse to inform the public about civil rights litigation. 

### Licensing Information

The Multi-LexSum dataset is distributed under the [Open Data Commons Attribution License (ODC-By)](https://opendatacommons.org/licenses/by/1-0/). 
The case summaries and metadata are licensed under the [Creative Commons Attribution License (CC BY-NC)](https://creativecommons.org/licenses/by-nc/4.0/), and the source documents are already in the public domain. 
Commercial users who desire a license for summaries and metadata can contact [info@clearinghouse.net](mailto:info@clearinghouse.net), which will allow free use but limit summary re-posting. 
The corresponding code for downloading and loading the dataset is licensed under the Apache License 2.0. 

### Citation Information


```
@article{Shen2022MultiLexSum,
  author    = {Zejiang Shen and
               Kyle Lo and
               Lauren Yu and
               Nathan Dahlberg and
               Margo Schlanger and
               Doug Downey},
  title     = {Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities},
  journal   = {CoRR},
  volume    = {abs/2206.10883},
  year      = {2022},****
  url       = {https://doi.org/10.48550/arXiv.2206.10883},
  doi       = {10.48550/arXiv.2206.10883}
}
```


## Release History 

|     Version |                                                  Description |
| ----------: | -----------------------------------------------------------: |
| `v20230518` | The v1.1 release including case and source document metadata |
| `v20220616` |                                     The initial v1.0 release |