Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-abstractive-qa
Languages:
English
Size:
100K - 1M
License:
File size: 11,403 Bytes
0e7df9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""TODO(break_data): Add a description here."""
from __future__ import absolute_import, division, print_function
import csv
import json
import os
import textwrap
import six
import datasets
# TODO(break): BibTeX citation
_CITATION = """\
@article{Wolfson2020Break,
title={Break It Down: A Question Understanding Benchmark},
author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},
journal={Transactions of the Association for Computational Linguistics},
year={2020},
}
"""
# TODO(break):
_DESCRIPTION = """\
Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations
(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases.
This repository contains the Break dataset along with information on the exact data format.
"""
_URL = "https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip"
class BreakDataConfig(datasets.BuilderConfig):
"""BuilderConfig for Break"""
def __init__(self, text_features, lexicon_tokens, **kwargs):
"""
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
lexicon_tokens: to define if we want to load the lexicon_tokens files or not
**kwargs: keyword arguments forwarded to super.
"""
super(BreakDataConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.lexicon_tokens = lexicon_tokens
class BreakData(datasets.GeneratorBasedBuilder):
"""TODO(break_data): Short description of my dataset."""
# TODO(break_data): Set up version.
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
BreakDataConfig(
name="QDMR-high-level",
description=textwrap.dedent(
"""
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading
Comprehension tasks (Section 2). lexicon_tokens files are also provided."""
),
text_features={
"question_id": "question_id",
"question_text": "question_text",
"decomposition": "decomposition",
"operators": "operators",
"split": "split",
},
lexicon_tokens=False,
),
BreakDataConfig(
name="QDMR-high-level-lexicon",
description=textwrap.dedent(
"""
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading
Comprehension tasks (Section 2). lexicon_tokens files are also provided."""
),
text_features={
"source": "source",
"allowed_tokens": "allowed_tokens",
},
lexicon_tokens=True,
),
BreakDataConfig(
name="QDMR",
description=textwrap.dedent(
"""
Contains questions over text, images and databases annotated with their Question Decomposition Meaning
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For
each question, the lexicon file contains the set of valid tokens that could potentially appear in its
decomposition """
),
text_features={
"question_id": "question_id",
"question_text": "question_text",
"decomposition": "decomposition",
"operators": "operators",
"split": "split",
},
lexicon_tokens=False,
),
BreakDataConfig(
name="QDMR-lexicon",
description=textwrap.dedent(
"""
Contains questions over text, images and databases annotated with their Question Decomposition Meaning
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For
each question, the lexicon file contains the set of valid tokens that could potentially appear in its
decomposition """
),
text_features={
"source": "source",
"allowed_tokens": "allowed_tokens",
},
lexicon_tokens=True,
),
BreakDataConfig(
name="logical-forms",
description=textwrap.dedent(
"""
Contains questions and QDMRs annotated with full logical-forms of QDMR operators + arguments. Full logical-forms
were inferred by the annotation-consistency algorithm described in """
),
lexicon_tokens=False,
text_features={
"question_id": "question_id",
"question_text": "question_text",
"decomposition": "decomposition",
"operators": "operators",
"split": "split",
"program": "program",
},
),
]
def _info(self):
# TODO(break_data): Specifies the datasets.DatasetInfo object
features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
features
# These are the features of your dataset like images, labels ...
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/allenai/Break",
citation=_CITATION,
)
# if
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(break_data): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "Break-dataset")
qdmr_high_level = os.path.join(data_dir, "QDMR-high-level")
qdmr = os.path.join(data_dir, "QDMR")
logical = os.path.join(data_dir, "logical-forms")
if self.config.name == "QDMR" or self.config.name == "QDMR-lexicon":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(qdmr, "train.csv")
if not self.config.lexicon_tokens
else os.path.join(qdmr, "train_lexicon_tokens.json")
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(qdmr, "dev.csv")
if not self.config.lexicon_tokens
else os.path.join(qdmr, "dev_lexicon_tokens.json")
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(qdmr, "test.csv")
if not self.config.lexicon_tokens
else os.path.join(qdmr, "test_lexicon_tokens.json")
},
),
]
elif self.config.name == "QDMR-high-level" or self.config.name == "QDMR-high-level-lexicon":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(qdmr_high_level, "train.csv")
if not self.config.lexicon_tokens
else os.path.join(qdmr_high_level, "train_lexicon_tokens.json")
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(qdmr_high_level, "dev.csv")
if not self.config.lexicon_tokens
else os.path.join(qdmr_high_level, "dev_lexicon_tokens.json")
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(qdmr_high_level, "test.csv")
if not self.config.lexicon_tokens
else os.path.join(qdmr_high_level, "test_lexicon_tokens.json")
},
),
]
elif self.config.name == "logical-forms":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(logical, "train.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(logical, "dev.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(logical, "test.csv")},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(break_data): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
if (
self.config.name == "QDMR-high-level"
or self.config.name == "QDMR"
or self.config.name == "logical-forms"
):
data = csv.DictReader(f)
for id_, row in enumerate(data):
yield id_, row
elif self.config.name == "QDMR-high-level-lexicon" or self.config.name == "QDMR-lexicon":
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, data
|