Datasets:
File size: 5,874 Bytes
27ea105 18c0514 27ea105 18c0514 27ea105 18c0514 27ea105 18c0514 27ea105 18c0514 c65860a 27ea105 18c0514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Atommic Dataset"""
import json
import datasets
_CITATION = """@article{Sap2019ATOMICAA,
title={ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning},
author={Maarten Sap and Ronan Le Bras and Emily Allaway and Chandra Bhagavatula and Nicholas Lourie and Hannah Rashkin and Brendan Roof and Noah A. Smith and Yejin Choi},
journal={ArXiv},
year={2019},
volume={abs/1811.00146}
}
"""
_DESCRIPTION = """This dataset provides the template sentences and
relationships defined in the ATOMIC common sense dataset. There are
three splits - train, test, and dev.
From the authors.
Disclaimer/Content warning: the events in atomic have been
automatically extracted from blogs, stories and books written at
various times. The events might depict violent or problematic actions,
which we left in the corpus for the sake of learning the (probably
negative but still important) commonsense implications associated with
the events. We removed a small set of truly out-dated events, but
might have missed some so please email us (msap@cs.washington.edu) if
you have any concerns.
"""
_HOMEPAGE = "https://homes.cs.washington.edu/~msap/atomic/"
_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/"
_URLs = {"atomic": "https://homes.cs.washington.edu/~msap/atomic/data/atomic_data.tgz"}
class Atomic(datasets.GeneratorBasedBuilder):
"""Atomic Common Sense Dataset"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="atomic", version=VERSION, description="The Atomic dataset"),
]
def _info(self):
features = datasets.Features(
{
"event": datasets.Value("string"),
"oEffect": datasets.Sequence(datasets.Value("string")),
"oReact": datasets.Sequence(datasets.Value("string")),
"oWant": datasets.Sequence(datasets.Value("string")),
"xAttr": datasets.Sequence(datasets.Value("string")),
"xEffect": datasets.Sequence(datasets.Value("string")),
"xIntent": datasets.Sequence(datasets.Value("string")),
"xNeed": datasets.Sequence(datasets.Value("string")),
"xReact": datasets.Sequence(datasets.Value("string")),
"xWant": datasets.Sequence(datasets.Value("string")),
"prefix": datasets.Sequence(datasets.Value("string")),
"split": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
archive = dl_manager.download(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": "v4_atomic_trn.csv",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": "v4_atomic_tst.csv",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": "v4_atomic_dev.csv",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, filepath, files):
"""Yields examples from the Atomic dataset."""
for path, f in files:
if path == filepath:
for id_, row in enumerate(f):
row = row.decode("utf-8")
if row.startswith("event"):
continue
row = row.replace('"[', "[").replace(']"', "]")
sent, rest = row.split("[", 1)
sent = sent.strip(', "')
rest = "[" + rest
rest = rest.replace('""', '"').replace('\\\\"]', '"]')
rest = rest.split(",")
rest[-1] = '"' + rest[-1].strip() + '"'
rest = ",".join(rest)
row = '["' + sent + '",' + rest + "]"
row = json.loads(row)
yield id_, {
"event": str(row[0]),
"oEffect": row[1],
"oReact": row[2],
"oWant": row[3],
"xAttr": row[4],
"xEffect": row[5],
"xIntent": row[6],
"xNeed": row[7],
"xReact": row[8],
"xWant": row[9],
"prefix": row[10],
"split": str(row[11]),
}
break
|