File size: 5,124 Bytes
808187d
f40d8c4
808187d
 
 
 
eadf52e
 
df10ff5
 
cafa6da
f80ee35
17acea3
62e9177
cafa6da
e774f45
 
808187d
3371f7f
808187d
 
 
 
 
 
e774f45
 
35f32ee
808187d
 
a014ab8
d11e825
808187d
5c728e6
 
d11e825
808187d
5d2aa2d
808187d
17acea3
d11e825
 
a014ab8
 
 
 
 
 
 
 
 
f875dbb
e774f45
d11e825
 
15fe087
d11e825
 
 
ba7d78e
f875dbb
 
 
 
4767376
f875dbb
 
f6ef9d8
f875dbb
 
 
4767376
 
 
e774f45
 
 
cafa6da
e774f45
 
 
 
30c4ef3
 
bc44388
e774f45
13a2b0f
e774f45
 
 
 
 
 
 
 
 
 
f875dbb
e774f45
3dede87
3b7918a
e774f45
3dede87
e774f45
 
f40d8c4
 
ad90602
 
4e8ce42
3b7918a
f40d8c4
 
3b7918a
ad90602
aaf8b27
df10ff5
51a3670
 
 
 
 
 
 
e774f45
 
 
 
 
3dede87
 
e774f45
 
 
 
 
3dede87
 
e774f45
 
 
 
 
1340d71
e774f45
 
3b7918a
e774f45
 
3b7918a
8c5ddc8
30c4ef3
a21fff4
e774f45
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""CC6204-Hackaton-Cub-Dataset: Multimodal"""
import glob
import os
import re
import datasets

from requests import get

#datasets.logging.set_verbosity_debug()
#logger = datasets.logging.get_logger(__name__)
#datasets.logging.set_verbosity_info()
#datasets.logging.set_verbosity_debug()


_DESCRIPTION = "Dataset multimodal para actividad del hackaton curso CC6204: Deep Learning"
_CITATION = "XYZ"
_HOMEPAGE = "https://github.com/ivansipiran/CC6204-Deep-Learning/blob/main/Hackaton/hackaton.md"

_REPO = "https://huggingface.co/datasets/alkzar90/CC6204-Hackaton-Cub-Dataset/resolve/main/data"

_URLS = {
   "train_test_split": f"{_REPO}/train_test_split.txt",
   "classes": f"{_REPO}/classes.txt",
   "image_class_labels": f"{_REPO}/image_class_labels.txt",
   "images": f"{_REPO}/images.txt",
   "image_urls": f"{_REPO}/images.zip",
   "text_urls": f"{_REPO}/text.zip",
   "mini_images_urls": f"{_REPO}/dummy/mini_images.zip"
}

# Create ClassId-to-label dictionary using the classes file
classes = get(_URLS["classes"]).iter_lines()
_ID2LABEL = {}
for row in classes:
   row = row.decode("UTF8")
   if row != "":
      idx, label = row.split(" ")
      _ID2LABEL[int(idx)] = re.search("[^\d\.\_+].+", label).group(0).replace("_", " ")
      
      
_NAMES = list(_ID2LABEL.values())

# Create imageId-to-ClassID dictionary using the image_class_labels
img_idx_2_class_idx = get(_URLS["image_class_labels"]).iter_lines()
_IMGID2CLASSID = {}
for row in img_idx_2_class_idx:
   row = row.decode("UTF8")
   if row != "":
      idx, class_id = row.split(" ")
      _IMGID2CLASSID[idx] = int(class_id)
      

# build from images.txt: a mapping from image_file_name -> id
imgpath_to_ids = get(_URLS["images"]).iter_lines()
_IMGNAME2ID = {}
for row in imgpath_to_ids:
   row = row.decode("UTF8")
   if row != "":
      idx, img_name = row.split(" ")
      _IMGNAME2ID[os.path.basename(img_name)] = idx
  
    
# Create TRAIN_IDX_SET
train_test_split = get(_URLS["train_test_split"]).iter_lines()
_TRAIN_IDX_SET = []
for row in train_test_split:
   row = row.decode("UTF8")
   if row != "":
      idx, train_bool = row.split(" ")
      # 1: train, 0: test
      if train_bool == "1":
         _TRAIN_IDX_SET.append(idx)
         
_TRAIN_IDX_SET = set(_TRAIN_IDX_SET)


class CubDataset(datasets.GeneratorBasedBuilder):
   """Cub Dataset para el Hackaton del curso CC6204: Deep Learning"""
   
   def _info(self):
      features = datasets.Features({
         "image": datasets.Image(),
         "description": datasets.Value("string"),
         "label": datasets.features.ClassLabel(names=_NAMES),
         "file_name": datasets.Value("string"),
      })
      keys = ("image", "label")
      
      return datasets.DatasetInfo(
         description=_DESCRIPTION,
         features=features,
         supervised_keys=keys,
         homepage=_HOMEPAGE,
         citation=_CITATION,
      )
      
      
   def _split_generators(self, dl_manager):      
      train_files = []
      train_idx = []
       
      test_files = []
      test_idx = []
      
      # Download images
      img_data_files = os.path.join(dl_manager.download_and_extract(_URLS["image_urls"]), "images")  # skip _MACOSX dir
      text_data_files = os.path.join(dl_manager.download_and_extract(_URLS["text_urls"]), "text")  # skip _MACOSX dir
      #logger.info(f"text_data_files: {text_data_files}")
      #logger.info(f"text_data_files: {text_data_files[10]}")

       
      img_path_files = sorted(glob.glob(os.path.join(img_data_files, "*", "*.jpg")))
      text_path_files = sorted(glob.glob(os.path.join(text_data_files, "*", "*.txt")))
       
      for img, text in zip(img_path_files, text_path_files):
         img_idx = _IMGNAME2ID[os.path.basename(img)]
         # Sanity check to ensure that pairs of text and image are correct
         if os.path.basename(img).replace(".jpg", "") == os.path.basename(text).replace(".txt", ""):
            if img_idx in _TRAIN_IDX_SET:
               train_files.append((img, text))
               train_idx.append(img_idx)
            else:
               test_files.append((img, text))
               test_idx.append(img_idx)
               
      return [
                 datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                       "files": train_files,
                       "image_idx": train_idx
                    }
                 ),
                 datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                       "files": test_files,
                       "image_idx": test_idx
                    }
                 )
      ]
      
      
   def _generate_examples(self, files, image_idx):
   
      for i, path in enumerate(files):
         file_name = os.path.basename(path[0])
         if file_name.endswith(".jpg"):
            yield i, {
               "image": path[0],
               "description": open(path[1], "r").read(),
               "label": _ID2LABEL[_IMGID2CLASSID[image_idx[i]]],
               "file_name": file_name,
            }