File size: 9,094 Bytes
9341178
 
 
 
 
 
e471d3c
9341178
 
 
 
 
 
 
e471d3c
9341178
 
 
 
 
 
 
 
 
 
 
 
323bedd
b266a81
ff984c7
 
 
 
 
 
 
 
 
91e85a5
 
 
 
 
 
 
ff984c7
 
 
 
 
 
 
 
 
e0bbca1
 
 
ff984c7
 
 
 
 
 
 
 
 
 
91e85a5
 
 
 
 
 
 
ff984c7
 
 
 
 
 
 
 
 
e0bbca1
 
 
ff984c7
 
9341178
 
 
 
 
 
 
323bedd
9341178
 
 
323bedd
 
9341178
 
 
 
 
 
 
 
 
 
 
 
 
48bd468
9341178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc17f42
 
 
 
9341178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bd468
 
 
ff984c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
annotations_creators:
- crowdsourced
language_creators:
- expert-generated
- found
language:
- ar
- bn
- fi
- ja
- ko
- ru
- te
license:
- mit
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
- extended|tydiqa
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: xor-tydi-qa
pretty_name: XOR QA
dataset_info:
- config_name: xor-retrieve
  features:
  - name: question
    dtype: string
  - name: lang
    dtype:
      class_label:
        names:
          '0': ar
          '1': bn
          '2': fi
          '3': ja
          '4': ko
          '5': ru
          '6': te
  - name: answers
    dtype: string
  splits:
  - name: train
    num_bytes: 1698662
    num_examples: 15250
  - name: validation
    num_bytes: 259533
    num_examples: 2110
  - name: test
    num_bytes: 219046
    num_examples: 2499
  download_size: 3702288
  dataset_size: 2177241
- config_name: xor-full
  features:
  - name: question
    dtype: string
  - name: lang
    dtype:
      class_label:
        names:
          '0': ar
          '1': bn
          '2': fi
          '3': ja
          '4': ko
          '5': ru
          '6': te
  - name: answers
    dtype: string
  splits:
  - name: train
    num_bytes: 7250913
    num_examples: 61360
  - name: validation
    num_bytes: 444672
    num_examples: 3473
  - name: test
    num_bytes: 706664
    num_examples: 8176
  download_size: 14018298
  dataset_size: 8402249
---

# Dataset Card for XOR QA

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [XOR QA Homepage](https://nlp.cs.washington.edu/xorqa/)
- **Repository:** [XOR QA Repository](https://github.com/AkariAsai/XORQA)
- **Paper:** [XOR QA Paper](https://arxiv.org/abs/2010.11856)
- **Leaderboard:** [XOR QA Leaderboard](https://nlp.cs.washington.edu/xorqa/)
- **Point of Contact:** [Akari Asai](akari@cs.washington.edu)

### Dataset Summary

XOR-TyDi QA brings together for the first time information-seeking questions, open-retrieval QA, and multilingual QA to create a multilingual open-retrieval QA dataset that enables cross-lingual answer retrieval. It consists of questions written by information-seeking native speakers in 7 typologically diverse languages and answer annotations that are retrieved from multilingual document collections. 

### Supported Tasks and Leaderboards

There are three sub-tasks: XOR-Retrieve, XOR-EnglishSpan, and XOR-Full.

- `XOR-retrieve`: XOR-Retrieve is a cross-lingual retrieval task where a question is written in a target language (e.g., Japanese) and a system is required to retrieve English paragraphs that answer the question. The dataset can be used to train a model for cross-lingual retrieval. Success on this task is typically measured by R@5kt, R@2kt (the recall by computing the fraction of the questions for which the minimal answer is contained in the top 5,000 / 2,000 tokens selected). This task has an active leaderboard which can be found at [leaderboard url](https://nlp.cs.washington.edu/xorqa/)

- `XOR-English Span`: XOR-English Span is a cross-lingual retrieval task where a question is written in a target language (e.g., Japanese) and a system is required to output a short answer in English. The dataset can be used to train a model for cross-lingual retrieval. Success on this task is typically measured by F1, EM. This task has an active leaderboard which can be found at [leaderboard url](https://nlp.cs.washington.edu/xorqa/)

- `XOR-Full`: XOR-Full is a cross-lingual retrieval task where a question is written in the target language (e.g., Japanese) and a system is required to output a short answer in a target language. Success on this task is typically measured by F1, EM, BLEU This task has an active leaderboard which can be found at [leaderboard url](https://nlp.cs.washington.edu/xorqa/)
### Languages

The text in the dataset is available in 7 languages: Arabic `ar`, Bengali `bn`, Finnish `fi`, Japanese `ja`, Korean `ko`, Russian `ru`, Telugu `te`

## Dataset Structure

### Data Instances

A typical data point comprises a `question`, it's `answer` the `language` of the question text and the split to which it belongs.

```
{
    "id": "-3979399588609321314", 
    "question": "Сколько детей было у Наполео́на I Бонапа́рта?", 
    "answers": ["сын"], 
    "lang": "ru", 
    "split": "train"
}
```

### Data Fields

- `id`: An identifier for each example in the dataset
- `question`: Open domain question
- `answers`: The corresponding answer to the question posed
- `lang`: BCP-47 language tag
- `split`: identifier to differentiate train, validation and test splits

### Data Splits

The data is split into a training, validation and test set for each of the two configurations.

|              | train | validation | test |
|--------------|------:|-----------:|-----:|
| XOR Retrieve | 15250 |       2113 | 2501 |
| XOR Full     | 61360 |       3179 | 8177 |

## Dataset Creation

### Curation Rationale

This task framework reflects well real-world scenarios where a QA system uses multilingual document collections and answers questions asked by users with diverse linguistic and cultural backgrounds. Despite the common assumption that we can find answers in the target language, web re- sources in non-English languages are largely lim- ited compared to English (information scarcity), or the contents are biased towards their own cul- tures (information asymmetry). To solve these issues, XOR-TYDI QA (Asai et al., 2020) provides a benchmark for developing a multilingual QA system that finds answers in multiple languages.

### Source Data

annotation pipeline consists of four steps: 1) collection of realistic questions that require cross-lingual ref- erences by annotating questions from TYDI QA without a same-language answer; 2) question translation from a target language to the pivot language of English where the missing informa- tion may exist; 3) answer span selection in the pivot language given a set of candidate documents; 4) answer verification and translation from the pivot language back to the original language.

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

The Dataset is created by extending TyDiQA dataset and translating the questions into other languages. The answers are obtained by crowdsourcing the questions to Mechanical Turk workders

### Annotations

#### Annotation process

The English questions from TyDiQA are translated into other languages. The languages are chosen based on the availability of wikipedia data and the availability of tranlators. 

#### Who are the annotators?

The translations are carried out using the professionla tranlation service (Gengo)[https://gengo.com] and the answers are annotated by MechanicalTurk workers

### Personal and Sensitive Information

The dataset is created from wikipedia content and the QA task requires preserving the named entities, there by all the Wikipedia Named Entities are preserved in the data. Not much information has been provided about masking sensitive information. 

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The people associated with the creation of the dataset are Akari Asai, Jungo Kasai, Jonathan H. Clark, Kenton Lee, Eunsol Choi, Hannaneh Hajishirzi

### Licensing Information

XOR-TyDi QA is distributed under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode) license

### Citation Information

```
@article{xorqa,
    title   = {XOR QA: Cross-lingual Open-Retrieval Question Answering},
    author  = {Akari Asai and Jungo Kasai and Jonathan H. Clark and Kenton Lee and Eunsol Choi and Hannaneh Hajishirzi}
    year    = {2020}
}
```
### Contributions

Thanks to [@sumanthd17](https://github.com/sumanthd17) for adding this dataset.