url
stringlengths
36
36
title
stringlengths
17
132
abstract
stringlengths
112
1.92k
venue
stringclasses
1 value
year
stringclasses
3 values
http://aclweb.org/anthology/D18-1175
Picking Apart Story Salads
During natural disasters and conflicts, information about what happened is often confusing, messy, and distributed across many sources. We would like to be able to automatically identify relevant information and assemble it into coherent narratives of what happened. To make this task accessible to neural models, we introduce Story Salads, mixtures of multiple documents that can be generated at scale. By exploiting the Wikipedia hierarchy, we can generate salads that exhibit challenging inference problems. Story salads give rise to a novel, challenging clustering task, where the objective is to group sentences from the same narratives. We demonstrate that simple bag-of-words similarity clustering falls short on this task and that it is necessary to take into account global context and coherence.
EMNLP
2018
http://aclweb.org/anthology/D18-1176
Dynamic Meta-Embeddings for Improved Sentence Representations
Sentence representations can capture a wide range of information that cannot be captured by local features based on character or word N-grams. This paper examines the usefulness of universal sentence representations for evaluating the quality of machine translation. Although it is difficult to train sentence representations using small-scale translation datasets with manual evaluation, sentence representations trained from large-scale data in other tasks can improve the automatic evaluation of machine translation. Experimental results of the WMT-2016 dataset show that the proposed method achieves state-of-the-art performance with sentence representation features only.
EMNLP
2018
http://aclweb.org/anthology/D18-1177
A Probabilistic Model for Joint Learning of Word Embeddings from Texts and Images
Inferring topics from the overwhelming amount of short texts becomes a critical but challenging task for many content analysis tasks, such as content charactering, user interest profiling, and emerging topic detecting. Existing methods such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA) cannot solve this prob- lem very well since only very limited word co-occurrence information is available in short texts. This paper studies how to incorporate the external word correlation knowledge into short texts to improve the coherence of topic modeling. Based on recent results in word embeddings that learn se- mantically representations for words from a large corpus, we introduce a novel method, Embedding-based Topic Model (ETM), to learn latent topics from short texts. ETM not only solves the problem of very limited word co-occurrence information by aggregating short texts into long pseudo- texts, but also utilizes a Markov Random Field regularized model that gives correlated words a better chance to be put into the same topic. The experiments on real-world datasets validate the effectiveness of our model comparing with the state-of-the-art models.
EMNLP
2018
http://aclweb.org/anthology/D18-1178
Transfer and Multi-Task Learning for Noun–Noun Compound Interpretation
Most natural language processing systems based on machine learning are not robust to domain shift. For example, a state-of-the-art syntactic dependency parser trained on Wall Street Journal sentences has an absolute drop in performance of more than ten points when tested on textual data from the Web. An efficient solution to make these methods more robust to domain shift is to first learn a word representation using large amounts of unlabeled data from both domains, and then use this representation as features in a supervised learning algorithm. In this paper, we propose to use hidden Markov models to learn word representations for part-of-speech tagging. In particular, we study the influence of using data from the source, the target or both domains to learn the representation and the different ways to represent words using an HMM.
EMNLP
2018
http://aclweb.org/anthology/D18-1179
Dissecting Contextual Word Embeddings: Architecture and Representation
Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.
EMNLP
2018
http://aclweb.org/anthology/D18-1180
Preposition Sense Disambiguation and Representation
We describe an inventory of semantic relations that are expressed by prepositions. We define these relations by building on the word sense disambiguation task for prepositions and propose a mapping from preposition senses to the relation labels by collapsing semantically related senses across prepositions.
EMNLP
2018
http://aclweb.org/anthology/D18-1181
Auto-Encoding Dictionary Definitions into Consistent Word Embeddings
Distributed representations of words have been shown to capture lexical semantics, as demonstrated by their effectiveness in word similarity and analogical relation tasks. But, these tasks only evaluate lexical semantics indirectly. In this paper, we study whether it is possible to utilize distributed representations to generate dictionary definitions of words, as a more direct and transparent representation of the embeddings' semantics. We introduce definition modeling, the task of generating a definition for a given word and its embedding. We present several definition model architectures based on recurrent neural networks, and experiment with the models over multiple data sets. Our results show that a model that controls dependencies between the word being defined and the definition words performs significantly better, and that a character-level convolution layer designed to leverage morphology can complement word-level embeddings. Finally, an error analysis suggests that the errors made by a definition model may provide insight into the shortcomings of word embeddings.
EMNLP
2018
http://aclweb.org/anthology/D18-1182
Spot the Odd Man Out: Exploring the Associative Power of Lexical Resources
We propose a range of deep lexical acquisition methods which make use of morphological, syntactic and ontological language resources to model word similarity and bootstrap from a seed lexicon. The different methods are deployed in learning lexical items for a precision grammar, and shown to each have strengths and weaknesses over different word classes. A particular focus of this paper is the relative accessibility of different language resource types, and predicted ``bang for the buck'' associated with each in deep lexical acquisition applications.
EMNLP
2018
http://aclweb.org/anthology/D18-1183
Neural Multitask Learning for Simile Recognition
Previous work has shown that neural encoder-decoder speech recognition can be improved with hierarchical multitask learning, where auxiliary tasks are added at intermediate layers of a deep encoder. We explore the effect of hierarchical multitask learning in the context of connectionist temporal classification (CTC)-based speech recognition, and investigate several aspects of this approach. Consistent with previous work, we observe performance improvements on telephone conversational speech recognition (specifically the Eval2000 test sets) when training a subword-level CTC model with an auxiliary phone loss at an intermediate layer. We analyze the effects of a number of experimental variables (like interpolation constant and position of the auxiliary loss function), performance in lower-resource settings, and the relationship between pretraining and multitask learning. We observe that the hierarchical multitask approach improves over standard multitask training in our higher-data experiments, while in the low-resource settings standard multitask training works well. The best results are obtained by combining hierarchical multitask learning and pretraining, which improves word error rates by 3.4% absolute on the Eval2000 test sets.
EMNLP
2018
http://aclweb.org/anthology/D18-1184
Structured Alignment Networks for Matching Sentences
This work improves monolingual sentence alignment for text simplification, specifically for text in standard and simple Wikipedia. We introduce a convolutional neural network structure to model similarity between two sentences. Due to the limitation of available parallel corpora, the model is trained in a semi-supervised way, by using the output of a knowledge-based high performance aligning system. We apply the resulting similarity score to rescore the knowledge-based output, and adapt the model by a small hand-aligned dataset. Experiments show that both rescoring and adaptation improve the performance of knowledge-based method.
EMNLP
2018
http://aclweb.org/anthology/D18-1185
Compare, Compress and Propagate: Enhancing Neural Architectures with Alignment Factorization for Natural Language Inference
This paper presents a new deep learning architecture for Natural Language Inference (NLI). Firstly, we introduce a new architecture where alignment pairs are compared, compressed and then propagated to upper layers for enhanced representation learning. Secondly, we adopt factorization layers for efficient and expressive compression of alignment vectors into scalar features, which are then used to augment the base word representations. The design of our approach is aimed to be conceptually simple, compact and yet powerful. We conduct experiments on three popular benchmarks, SNLI, MultiNLI and SciTail, achieving competitive performance on all. A lightweight parameterization of our model also enjoys a $\approx 3$ times reduction in parameter size compared to the existing state-of-the-art models, e.g., ESIM and DIIN, while maintaining competitive performance. Additionally, visual analysis shows that our propagated features are highly interpretable.
EMNLP
2018
http://aclweb.org/anthology/D18-1186
Convolutional Interaction Network for Natural Language Inference
Natural language inference (NLI) is a central problem in language understanding. End-to-end artificial neural networks have reached state-of-the-art performance in NLI field recently. In this paper, we propose Character-level Intra Attention Network (CIAN) for the NLI task. In our model, we use the character-level convolutional network to replace the standard word embedding layer, and we use the intra attention to capture the intra-sentence semantics. The proposed CIAN model provides improved results based on a newly published MNLI corpus.
EMNLP
2018
http://aclweb.org/anthology/D18-1187
Lessons from Natural Language Inference in the Clinical Domain
State of the art models using deep neural networks have become very good in learning an accurate mapping from inputs to outputs. However, they still lack generalization capabilities in conditions that differ from the ones encountered during training. This is even more challenging in specialized, and knowledge intensive domains, where training data is limited. To address this gap, we introduce MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI), grounded in the medical history of patients. We present strategies to: 1) leverage transfer learning using datasets from the open domain, (e.g. SNLI) and 2) incorporate domain knowledge from external data and lexical sources (e.g. medical terminologies). Our results demonstrate performance gains using both strategies.
EMNLP
2018
http://aclweb.org/anthology/D18-1188
Question Generation from SQL Queries Improves Neural Semantic Parsing
We present a generative model to map natural language questions into SQL queries. Existing neural network based approaches typically generate a SQL query word-by-word, however, a large portion of the generated results are incorrect or not executable due to the mismatch between question words and table contents. Our approach addresses this problem by considering the structure of table and the syntax of SQL language. The quality of the generated SQL query is significantly improved through (1) learning to replicate content from column names, cells or SQL keywords; and (2) improving the generation of WHERE clause by leveraging the column-cell relation. Experiments are conducted on WikiSQL, a recently released dataset with the largest question-SQL pairs. Our approach significantly improves the state-of-the-art execution accuracy from 69.0% to 74.4%.
EMNLP
2018
http://aclweb.org/anthology/D18-1189
SemRegex: A Semantics-Based Approach for Generating Regular Expressions from Natural Language Specifications
This paper explores the task of translating natural language queries into regular expressions which embody their meaning. In contrast to prior work, the proposed neural model does not utilize domain-specific crafting, learning to translate directly from a parallel corpus. To fully explore the potential of neural models, we propose a methodology for collecting a large corpus of regular expression, natural language pairs. Our resulting model achieves a performance gain of 19.6% over previous state-of-the-art models.
EMNLP
2018
http://aclweb.org/anthology/D18-1190
Decoupling Structure and Lexicon for Zero-Shot Semantic Parsing
Building a semantic parser quickly in a new domain is a fundamental challenge for conversational interfaces, as current semantic parsers require expensive supervision and lack the ability to generalize to new domains. In this paper, we introduce a zero-shot approach to semantic parsing that can parse utterances in unseen domains while only being trained on examples in other source domains. First, we map an utterance to an abstract, domain-independent, logical form that represents the structure of the logical form, but contains slots instead of KB constants. Then, we replace slots with KB constants via lexical alignment scores and global inference. Our model reaches an average accuracy of 53.4% on 7 domains in the Overnight dataset, substantially better than other zero-shot baselines, and performs as good as a parser trained on over 30% of the target domain examples.
EMNLP
2018
http://aclweb.org/anthology/D18-1191
A Span Selection Model for Semantic Role Labeling
We present a simple and accurate span-based model for semantic role labeling (SRL). Our model directly takes into account all possible argument spans and scores them for each label. At decoding time, we greedily select higher scoring labeled spans. One advantage of our model is to allow us to design and use span-level features, that are difficult to use in token-based BIO tagging approaches. Experimental results demonstrate that our ensemble model achieves the state-of-the-art results, 87.4 F1 and 87.0 F1 on the CoNLL-2005 and 2012 datasets, respectively.
EMNLP
2018
http://aclweb.org/anthology/D18-1192
Mapping Language to Code in Programmatic Context
Source code is rarely written in isolation. It depends significantly on the programmatic context, such as the class that the code would reside in. To study this phenomenon, we introduce the task of generating class member functions given English documentation and the programmatic context provided by the rest of the class. This task is challenging because the desired code can vary greatly depending on the functionality the class provides (e.g., a sort function may or may not be available when we are asked to "return the smallest element" in a particular member variable list). We introduce CONCODE, a new large dataset with over 100,000 examples consisting of Java classes from online code repositories, and develop a new encoder-decoder architecture that models the interaction between the method documentation and the class environment. We also present a detailed error analysis suggesting that there is significant room for future work on this task.
EMNLP
2018
http://aclweb.org/anthology/D18-1193
SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task
We consider task and motion planning in complex dynamic environments for problems expressed in terms of a set of Linear Temporal Logic (LTL) constraints, and a reward function. We propose a methodology based on reinforcement learning that employs deep neural networks to learn low-level control policies as well as task-level option policies. A major challenge in this setting, both for neural network approaches and classical planning, is the need to explore future worlds of a complex and interactive environment. To this end, we integrate Monte Carlo Tree Search with hierarchical neural net control policies trained on expressive LTL specifications. This paper investigates the ability of neural networks to learn both LTL constraints and control policies in order to generate task plans in complex environments. We demonstrate our approach in a simulated autonomous driving setting, where a vehicle must drive down a road in traffic, avoid collisions, and navigate an intersection, all while obeying given rules of the road.
EMNLP
2018
http://aclweb.org/anthology/D18-1194
Cross-lingual Decompositional Semantic Parsing
In this dissertation we study regular expression based parsing and the use of grammatical specifications for the synthesis of fast, streaming string-processing programs. In the first part we develop two linear-time algorithms for regular expression based parsing with Perl-style greedy disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle and action machines, and a finite-state specialization of the streaming parsing algorithm presented in the first part. In the second part we also develop a new linear-time streaming parsing algorithm for parsing expression grammars (PEG) which generalizes the regular grammars of Kleenex. The algorithm is based on a bottom-up tabulation algorithm reformulated using least fixed points and evaluated using an instance of the chaotic iteration scheme by Cousot and Cousot.
EMNLP
2018
http://aclweb.org/anthology/D18-1195
Learning to Learn Semantic Parsers from Natural Language Supervision
For building question answering systems and natural language interfaces, semantic parsing has emerged as an important and powerful paradigm. Semantic parsers map natural language into logical forms, the classic representation for many important linguistic phenomena. The modern twist is that we are interested in learning semantic parsers from data, which introduces a new layer of statistical and computational issues. This article lays out the components of a statistical semantic parser, highlighting the key challenges. We will see that semantic parsing is a rich fusion of the logical and the statistical world, and that this fusion will play an integral role in the future of natural language understanding systems.
EMNLP
2018
http://aclweb.org/anthology/D18-1196
DeepCx: A transition-based approach for shallow semantic parsing with complex constructional triggers
To parse images into fine-grained semantic parts, the complex fine-grained elements will put it in trouble when using off-the-shelf semantic segmentation networks. In this paper, for image parsing task, we propose to parse images from coarse to fine with progressively refined semantic classes. It is achieved by stacking the segmentation layers in a segmentation network several times. The former segmentation module parses images at a coarser-grained level, and the result will be feed to the following one to provide effective contextual clues for the finer-grained parsing. To recover the details of small structures, we add skip connections from shallow layers of the network to fine-grained parsing modules. As for the network training, we merge classes in groundtruth to get coarse-to-fine label maps, and train the stacked network with these hierarchical supervision end-to-end. Our coarse-to-fine stacked framework can be injected into many advanced neural networks to improve the parsing results. Extensive evaluations on several public datasets including face parsing and human parsing well demonstrate the superiority of our method.
EMNLP
2018
http://aclweb.org/anthology/D18-1197
What It Takes to Achieve 100 Percent Condition Accuracy on WikiSQL
We consider the problem of neural semantic parsing, which translates natural language questions into executable SQL queries. We introduce a new mechanism, execution guidance, to leverage the semantics of SQL. It detects and excludes faulty programs during the decoding procedure by conditioning on the execution of partially generated program. The mechanism can be used with any autoregressive generative model, which we demonstrate on four state-of-the-art recurrent or template-based semantic parsing models. We demonstrate that execution guidance universally improves model performance on various text-to-SQL datasets with different scales and query complexity: WikiSQL, ATIS, and GeoQuery. As a result, we achieve new state-of-the-art execution accuracy of 83.8% on WikiSQL.
EMNLP
2018
http://aclweb.org/anthology/D18-1198
Better Transition-Based AMR Parsing with a Refined Search Space
The Abstract Meaning Representation (AMR) is a representation for open-domain rich semantics, with potential use in fields like event extraction and machine translation. Node generation, typically done using a simple dictionary lookup, is currently an important limiting factor in AMR parsing. We propose a small set of actions that derive AMR subgraphs by transformations on spans of text, which allows for more robust learning of this stage. Our set of construction actions generalize better than the previous approach, and can be learned with a simple classifier. We improve on the previous state-of-the-art result for AMR parsing, boosting end-to-end performance by 3 F$_1$ on both the LDC2013E117 and LDC2014T12 datasets.
EMNLP
2018
http://aclweb.org/anthology/D18-1199
Heuristically Informed Unsupervised Idiom Usage Recognition
In recent years, deep hashing methods have been proved to be efficient since it employs convolutional neural network to learn features and hashing codes simultaneously. However, these methods are mostly supervised. In real-world application, it is a time-consuming and overloaded task for annotating a large number of images. In this paper, we propose a novel unsupervised deep hashing method for large-scale image retrieval. Our method, namely unsupervised semantic deep hashing (\textbf{USDH}), uses semantic information preserved in the CNN feature layer to guide the training of network. We enforce four criteria on hashing codes learning based on VGG-19 model: 1) preserving relevant information of feature space in hashing space; 2) minimizing quantization loss between binary-like codes and hashing codes; 3) improving the usage of each bit in hashing codes by using maximum information entropy, and 4) invariant to image rotation. Extensive experiments on CIFAR-10, NUSWIDE have demonstrated that \textbf{USDH} outperforms several state-of-the-art unsupervised hashing methods for image retrieval. We also conduct experiments on Oxford 17 datasets for fine-grained classification to verify its efficiency for other computer vision tasks.
EMNLP
2018
http://aclweb.org/anthology/D18-1200
Coming to Your Senses: on Controls and Evaluation Sets in Polysemy Research
Here we study polysemy as a potential learning bias in vocabulary learning in children. We employ a massive set of transcriptions of conversations between children and adults in English, to analyze the evolution of mean polysemy in the words produced by children whose ages range between 10 and 60 months. Our results show that mean polysemy in children increases over time in two phases, i.e. a fast growth till the 31st month followed by a slower tendency towards adult speech. In contrast, no dependency with time is found in adults. This suggests that children have a preference for non-polysemous words in their early stages of vocabulary acquisition. Our hypothesis is twofold: (a) polysemy is a standalone bias or (b) polysemy is a side-effect of other biases. Interestingly, the bias for low polysemy described above weakens when controlling for syntactic category (noun, verb, adjective or adverb). The pattern of the evolution of polysemy suggests that both hypotheses may apply to some extent, and that (b) would originate from a combination of the well-known preference for nouns and the lower polysemy of nouns with respect to other syntactic categories.
EMNLP
2018
http://aclweb.org/anthology/D18-1201
Predicting Semantic Relations using Global Graph Properties
Semantic graphs, such as WordNet, are resources which curate natural language on two distinguishable layers. On the local level, individual relations between synsets (semantic building blocks) such as hypernymy and meronymy enhance our understanding of the words used to express their meanings. Globally, analysis of graph-theoretic properties of the entire net sheds light on the structure of human language as a whole. In this paper, we combine global and local properties of semantic graphs through the framework of Max-Margin Markov Graph Models (M3GM), a novel extension of Exponential Random Graph Model (ERGM) that scales to large multi-relational graphs. We demonstrate how such global modeling improves performance on the local task of predicting semantic relations between synsets, yielding new state-of-the-art results on the WN18RR dataset, a challenging version of WordNet link prediction in which "easy" reciprocal cases are removed. In addition, the M3GM model identifies multirelational motifs that are characteristic of well-formed lexical semantic ontologies.
EMNLP
2018
http://aclweb.org/anthology/D18-1202
Learning Scalar Adjective Intensity from Paraphrases
This paper studies the potential of identifying lexical paraphrases within a single corpus, focusing on the extraction of verb paraphrases. Most previous approaches detect individual paraphrase instances within a pair (or set) of comparable corpora, each of them containing roughly the same information, and rely on the substantial level of correspondence of such corpora. We present a novel method that successfully detects isolated paraphrase instances within a single corpus without relying on any a-priori structure and information. A comparison suggests that an instance-based approach may be combined with a vector based approach in order to assess better the paraphrase likelihood for many verb pairs.
EMNLP
2018
http://aclweb.org/anthology/D18-1203
Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions
In this paper, we propose a new kernel-based co-occurrence measure that can be applied to sparse linguistic expressions (e.g., sentences) with a very short learning time, as an alternative to pointwise mutual information (PMI). As well as deriving PMI from mutual information, we derive this new measure from the Hilbert--Schmidt independence criterion (HSIC); thus, we call the new measure the pointwise HSIC (PHSIC). PHSIC can be interpreted as a smoothed variant of PMI that allows various similarity metrics (e.g., sentence embeddings) to be plugged in as kernels. Moreover, PHSIC can be estimated by simple and fast (linear in the size of the data) matrix calculations regardless of whether we use linear or nonlinear kernels. Empirically, in a dialogue response selection task, PHSIC is learned thousands of times faster than an RNN-based PMI while outperforming PMI in accuracy. In addition, we also demonstrate that PHSIC is beneficial as a criterion of a data selection task for machine translation owing to its ability to give high (low) scores to a consistent (inconsistent) pair with other pairs.
EMNLP
2018
http://aclweb.org/anthology/D18-1204
Neural Related Work Summarization with a Joint Context-driven Attention Mechanism
Query relevance ranking and sentence saliency ranking are the two main tasks in extractive query-focused summarization. Previous supervised summarization systems often perform the two tasks in isolation. However, since reference summaries are the trade-off between relevance and saliency, using them as supervision, neither of the two rankers could be trained well. This paper proposes a novel summarization system called AttSum, which tackles the two tasks jointly. It automatically learns distributed representations for sentences as well as the document cluster. Meanwhile, it applies the attention mechanism to simulate the attentive reading of human behavior when a query is given. Extensive experiments are conducted on DUC query-focused summarization benchmark datasets. Without using any hand-crafted features, AttSum achieves competitive performance. It is also observed that the sentences recognized to focus on the query indeed meet the query need.
EMNLP
2018
http://aclweb.org/anthology/D18-1205
Improving Neural Abstractive Document Summarization with Explicit Information Selection Modeling
Recent work on abstractive summarization has made progress with neural encoder-decoder architectures. However, such models are often challenged due to their lack of explicit semantic modeling of the source document and its summary. In this paper, we extend previous work on abstractive summarization using Abstract Meaning Representation (AMR) with a neural language generation stage which we guide using the source document. We demonstrate that this guidance improves summarization results by 7.4 and 10.5 points in ROUGE-2 using gold standard AMR parses and parses obtained from an off-the-shelf parser respectively. We also find that the summarization performance using the latter is 2 ROUGE-2 points higher than that of a well-established neural encoder-decoder approach trained on a larger dataset. Code is available at \url{https://github.com/sheffieldnlp/AMR2Text-summ}
EMNLP
2018
http://aclweb.org/anthology/D18-1206
Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization
We introduce extreme summarization, a new single-document summarization task which does not favor extractive strategies and calls for an abstractive modeling approach. The idea is to create a short, one-sentence news summary answering the question "What is the article about?". We collect a real-world, large-scale dataset for this task by harvesting online articles from the British Broadcasting Corporation (BBC). We propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans.
EMNLP
2018
http://aclweb.org/anthology/D18-1207
Improving Abstraction in Text Summarization
Unlike extractive summarization, abstractive summarization has to fuse different parts of the source text, which inclines to create fake facts. Our preliminary study reveals nearly 30% of the outputs from a state-of-the-art neural summarization system suffer from this problem. While previous abstractive summarization approaches usually focus on the improvement of informativeness, we argue that faithfulness is also a vital prerequisite for a practical abstractive summarization system. To avoid generating fake facts in a summary, we leverage open information extraction and dependency parse technologies to extract actual fact descriptions from the source text. The dual-attention sequence-to-sequence framework is then proposed to force the generation conditioned on both the source text and the extracted fact descriptions. Experiments on the Gigaword benchmark dataset demonstrate that our model can greatly reduce fake summaries by 80%. Notably, the fact descriptions also bring significant improvement on informativeness since they often condense the meaning of the source text.
EMNLP
2018
http://aclweb.org/anthology/D18-1208
Content Selection in Deep Learning Models of Summarization
We carry out experiments with deep learning models of summarization across the domains of news, personal stories, meetings, and medical articles in order to understand how content selection is performed. We find that many sophisticated features of state of the art extractive summarizers do not improve performance over simpler models. These results suggest that it is easier to create a summarizer for a new domain than previous work suggests and bring into question the benefit of deep learning models for summarization for those domains that do have massive datasets (i.e., news). At the same time, they suggest important questions for new research in summarization; namely, new forms of sentence representations or external knowledge sources are needed that are better suited to the summarization task.
EMNLP
2018
http://aclweb.org/anthology/D18-1209
Improved Semantic-Aware Network Embedding with Fine-Grained Word Alignment
Network embeddings, which learn low-dimensional representations for each vertex in a large-scale network, have received considerable attention in recent years. For a wide range of applications, vertices in a network are typically accompanied by rich textual information such as user profiles, paper abstracts, etc. We propose to incorporate semantic features into network embeddings by matching important words between text sequences for all pairs of vertices. We introduce a word-by-word alignment framework that measures the compatibility of embeddings between word pairs, and then adaptively accumulates these alignment features with a simple yet effective aggregation function. In experiments, we evaluate the proposed framework on three real-world benchmarks for downstream tasks, including link prediction and multi-label vertex classification. Results demonstrate that our model outperforms state-of-the-art network embedding methods by a large margin.
EMNLP
2018
http://aclweb.org/anthology/D18-1210
Learning Context-Sensitive Convolutional Filters for Text Processing
Convolutional neural networks (CNNs) have recently emerged as a popular building block for natural language processing (NLP). Despite their success, most existing CNN models employed in NLP share the same learned (and static) set of filters for all input sentences. In this paper, we consider an approach of using a small meta network to learn context-sensitive convolutional filters for text processing. The role of meta network is to abstract the contextual information of a sentence or document into a set of input-aware filters. We further generalize this framework to model sentence pairs, where a bidirectional filter generation mechanism is introduced to encapsulate co-dependent sentence representations. In our benchmarks on four different tasks, including ontology classification, sentiment analysis, answer sentence selection, and paraphrase identification, our proposed model, a modified CNN with context-sensitive filters, consistently outperforms the standard CNN and attention-based CNN baselines. By visualizing the learned context-sensitive filters, we further validate and rationalize the effectiveness of proposed framework.
EMNLP
2018
http://aclweb.org/anthology/D18-1211
Deep Relevance Ranking Using Enhanced Document-Query Interactions
We explore several new models for document relevance ranking, building upon the Deep Relevance Matching Model (DRMM) of Guo et al. (2016). Unlike DRMM, which uses context-insensitive encodings of terms and query-document term interactions, we inject rich context-sensitive encodings throughout our models, inspired by PACRR's (Hui et al., 2017) convolutional n-gram matching features, but extended in several ways including multiple views of query and document inputs. We test our models on datasets from the BIOASQ question answering challenge (Tsatsaronis et al., 2015) and TREC ROBUST 2004 (Voorhees, 2005), showing they outperform BM25-based baselines, DRMM, and PACRR.
EMNLP
2018
http://aclweb.org/anthology/D18-1212
Learning Neural Representation for CLIR with Adversarial Framework
We propose a fully unsupervised framework for ad-hoc cross-lingual information retrieval (CLIR) which requires no bilingual data at all. The framework leverages shared cross-lingual word embedding spaces in which terms, queries, and documents can be represented, irrespective of their actual language. The shared embedding spaces are induced solely on the basis of monolingual corpora in two languages through an iterative process based on adversarial neural networks. Our experiments on the standard CLEF CLIR collections for three language pairs of varying degrees of language similarity (English-Dutch/Italian/Finnish) demonstrate the usefulness of the proposed fully unsupervised approach. Our CLIR models with unsupervised cross-lingual embeddings outperform baselines that utilize cross-lingual embeddings induced relying on word-level and document-level alignments. We then demonstrate that further improvements can be achieved by unsupervised ensemble CLIR models. We believe that the proposed framework is the first step towards development of effective CLIR models for language pairs and domains where parallel data are scarce or non-existent.
EMNLP
2018
http://aclweb.org/anthology/D18-1213
AD3: Attentive Deep Document Dater
While in a classification or a regression setting a label or a value is assigned to each individual document, in a ranking setting we determine the relevance ordering of the entire input document list. This difference leads to the notion of relative relevance between documents in ranking. The majority of the existing learning-to-rank algorithms model such relativity at the loss level using pairwise or listwise loss functions. However, they are restricted to pointwise scoring functions, i.e., the relevance score of a document is computed based on the document itself, regardless of the other documents in the list. In this paper, we overcome this limitation by proposing generalized groupwise scoring functions (GSFs), in which the relevance score of a document is determined jointly by groups of documents in the list. We learn GSFs with a deep neural network architecture, and demonstrate that several representative learning-to-rank algorithms can be modeled as special cases in our framework. We conduct evaluation using the public MSLR-WEB30K dataset, and our experiments show that GSFs lead to significant performance improvements both in a standalone deep learning architecture, or when combined with a state-of-the-art tree-based learning-to-rank algorithm.
EMNLP
2018
http://aclweb.org/anthology/D18-1214
Gromov-Wasserstein Alignment of Word Embedding Spaces
As an ubiquitous method in natural language processing, word embeddings are extensively employed to map semantic properties of words into a dense vector representation. They capture semantic and syntactic relations among words but the vector corresponding to the words are only meaningful relative to each other. Neither the vector nor its dimensions have any absolute, interpretable meaning. We introduce an additive modification to the objective function of the embedding learning algorithm that encourages the embedding vectors of words that are semantically related a predefined concept to take larger values along a specified dimension, while leaving the original semantic learning mechanism mostly unaffected. In other words, we align words that are already determined to be related, along predefined concepts. Therefore, we impart interpretability to the word embedding by assigning meaning to its vector dimensions. The predefined concepts are derived from an external lexical resource, which in this paper is chosen as Roget's Thesaurus. We observe that alignment along the chosen concepts is not limited to words in the Thesaurus and extends to other related words as well. We quantify the extent of interpretability and assignment of meaning from our experimental results. We also demonstrate the preservation of semantic coherence of the resulting vector space by using word-analogy and word-similarity tests. These tests show that the interpretability-imparted word embeddings that are obtained by the proposed framework do not sacrifice performances in common benchmark tests.
EMNLP
2018
http://aclweb.org/anthology/D18-1215
Deep Probabilistic Logic: A Unifying Framework for Indirect Supervision
Deep learning has emerged as a versatile tool for a wide range of NLP tasks, due to its superior capacity in representation learning. But its applicability is limited by the reliance on annotated examples, which are difficult to produce at scale. Indirect supervision has emerged as a promising direction to address this bottleneck, either by introducing labeling functions to automatically generate noisy examples from unlabeled text, or by imposing constraints over interdependent label decisions. A plethora of methods have been proposed, each with respective strengths and limitations. Probabilistic logic offers a unifying language to represent indirect supervision, but end-to-end modeling with probabilistic logic is often infeasible due to intractable inference and learning. In this paper, we propose deep probabilistic logic (DPL) as a general framework for indirect supervision, by composing probabilistic logic with deep learning. DPL models label decisions as latent variables, represents prior knowledge on their relations using weighted first-order logical formulas, and alternates between learning a deep neural network for the end task and refining uncertain formula weights for indirect supervision, using variational EM. This framework subsumes prior indirect supervision methods as special cases, and enables novel combination via infusion of rich domain and linguistic knowledge. Experiments on biomedical machine reading demonstrate the promise of this approach.
EMNLP
2018
http://aclweb.org/anthology/D18-1216
Deriving Machine Attention from Human Rationales
Attention-based models are successful when trained on large amounts of data. In this paper, we demonstrate that even in the low-resource scenario, attention can be learned effectively. To this end, we start with discrete human-annotated rationales and map them into continuous attention. Our central hypothesis is that this mapping is general across domains, and thus can be transferred from resource-rich domains to low-resource ones. Our model jointly learns a domain-invariant representation and induces the desired mapping between rationales and attention. Our empirical results validate this hypothesis and show that our approach delivers significant gains over state-of-the-art baselines, yielding over 15% average error reduction on benchmark datasets.
EMNLP
2018
http://aclweb.org/anthology/D18-1217
Semi-Supervised Sequence Modeling with Cross-View Training
We simplify sentences with an attentive neural network sequence to sequence model, dubbed S4. The model includes a novel word-copy mechanism and loss function to exploit linguistic similarities between the original and simplified sentences. It also jointly uses pre-trained and fine-tuned word embeddings to capture the semantics of complex sentences and to mitigate the effects of limited data. When trained and evaluated on pairs of sentences from thousands of news articles, we observe a 8.8 point improvement in BLEU score over a sequence to sequence baseline; however, learning word substitutions remains difficult. Such sequence to sequence models are promising for other text generation tasks such as style transfer.
EMNLP
2018
http://aclweb.org/anthology/D18-1218
A Probabilistic Annotation Model for Crowdsourcing Coreference
A popular approach for large scale data annotation tasks is crowdsourcing, wherein each data point is labeled by multiple noisy annotators. We consider the problem of inferring ground truth from noisy ordinal labels obtained from multiple annotators of varying and unknown expertise levels. Annotation models for ordinal data have been proposed mostly as extensions of their binary/categorical counterparts and have received little attention in the crowdsourcing literature. We propose a new model for crowdsourced ordinal data that accounts for instance difficulty as well as annotator expertise, and derive a variational Bayesian inference algorithm for parameter estimation. We analyze the ordinal extensions of several state-of-the-art annotator models for binary/categorical labels and evaluate the performance of all the models on two real world datasets containing ordinal query-URL relevance scores, collected through Amazon's Mechanical Turk. Our results indicate that the proposed model performs better or as well as existing state-of-the-art methods and is more resistant to `spammy' annotators (i.e., annotators who assign labels randomly without actually looking at the instance) than popular baselines such as mean, median, and majority vote which do not account for annotator expertise.
EMNLP
2018
http://aclweb.org/anthology/D18-1219
A Deterministic Algorithm for Bridging Anaphora Resolution
Previous work on bridging anaphora resolution (Poesio et al., 2004; Hou et al., 2013b) use syntactic preposition patterns to calculate word relatedness. However, such patterns only consider NPs' head nouns and hence do not fully capture the semantics of NPs. Recently, Hou (2018) created word embeddings (embeddings_PP) to capture associative similarity (ie, relatedness) between nouns by exploring the syntactic structure of noun phrases. But embeddings_PP only contains word representations for nouns. In this paper, we create new word vectors by combining embeddings_PP with GloVe. This new word embeddings (embeddings_bridging) are a more general lexical knowledge resource for bridging and allow us to represent the meaning of an NP beyond its head easily. We therefore develop a deterministic approach for bridging anaphora resolution, which represents the semantics of an NP based on its head noun and modifications. We show that this simple approach achieves the competitive results compared to the best system in Hou et al.(2013b) which explores Markov Logic Networks to model the problem. Additionally, we further improve the results for bridging anaphora resolution reported in Hou (2018) by combining our simple deterministic approach with Hou et al.(2013b)'s best system MLN II.
EMNLP
2018
http://aclweb.org/anthology/D18-1220
A Knowledge Hunting Framework for Common Sense Reasoning
We introduce an automatic system that achieves state-of-the-art results on the Winograd Schema Challenge (WSC), a common sense reasoning task that requires diverse, complex forms of inference and knowledge. Our method uses a knowledge hunting module to gather text from the web, which serves as evidence for candidate problem resolutions. Given an input problem, our system generates relevant queries to send to a search engine, then extracts and classifies knowledge from the returned results and weighs them to make a resolution. Our approach improves F1 performance on the full WSC by 0.21 over the previous best and represents the first system to exceed 0.5 F1. We further demonstrate that the approach is competitive on the Choice of Plausible Alternatives (COPA) task, which suggests that it is generally applicable.
EMNLP
2018
http://aclweb.org/anthology/D18-1221
Mapping Text to Knowledge Graph Entities using Multi-Sense LSTMs
This paper addresses the problem of mapping natural language text to knowledge base entities. The mapping process is approached as a composition of a phrase or a sentence into a point in a multi-dimensional entity space obtained from a knowledge graph. The compositional model is an LSTM equipped with a dynamic disambiguation mechanism on the input word embeddings (a Multi-Sense LSTM), addressing polysemy issues. Further, the knowledge base space is prepared by collecting random walks from a graph enhanced with textual features, which act as a set of semantic bridges between text and knowledge base entities. The ideas of this work are demonstrated on large-scale text-to-entity mapping and entity classification tasks, with state of the art results.
EMNLP
2018
http://aclweb.org/anthology/D18-1222
Differentiating Concepts and Instances for Knowledge Graph Embedding
Concepts, which represent a group of different instances sharing common properties, are essential information in knowledge representation. Most conventional knowledge embedding methods encode both entities (concepts and instances) and relations as vectors in a low dimensional semantic space equally, ignoring the difference between concepts and instances. In this paper, we propose a novel knowledge graph embedding model named TransC by differentiating concepts and instances. Specifically, TransC encodes each concept in knowledge graph as a sphere and each instance as a vector in the same semantic space. We use the relative positions to model the relations between concepts and instances (i.e., instanceOf), and the relations between concepts and sub-concepts (i.e., subClassOf). We evaluate our model on both link prediction and triple classification tasks on the dataset based on YAGO. Experimental results show that TransC outperforms state-of-the-art methods, and captures the semantic transitivity for instanceOf and subClassOf relation. Our codes and datasets can be obtained from https:// github.com/davidlvxin/TransC.
EMNLP
2018
http://aclweb.org/anthology/D18-1223
One-Shot Relational Learning for Knowledge Graphs
Joint representation learning of text and knowledge within a unified semantic space enables us to perform knowledge graph completion more accurately. In this work, we propose a novel framework to embed words, entities and relations into the same continuous vector space. In this model, both entity and relation embeddings are learned by taking knowledge graph and plain text into consideration. In experiments, we evaluate the joint learning model on three tasks including entity prediction, relation prediction and relation classification from text. The experiment results show that our model can significantly and consistently improve the performance on the three tasks as compared with other baselines.
EMNLP
2018
http://aclweb.org/anthology/D18-1224
Regular Expression Guided Entity Mention Mining from Noisy Web Data
We focus on two research issues in entity search: scoring a document or snippet that potentially supports a candidate entity, and aggregating scores from different snippets into an entity score. Proximity scoring has been studied in IR outside the scope of entity search. However, aggregation has been hardwired except in a few cases where probabilistic language models are used. We instead explore simple, robust, discriminative ranking algorithms, with informative snippet features and broad families of aggregation functions. Our first contribution is a study of proximity-cognizant snippet features. In contrast with prior work which uses hardwired "proximity kernels" that implement a fixed decay with distance, we present a "universal" feature encoding which jointly expresses the perplexity (informativeness) of a query term match and the proximity of the match to the entity mention. Our second contribution is a study of aggregation functions. Rather than train the ranking algorithm on snippets and then aggregate scores, we directly train on entities such that the ranking algorithm takes into account the aggregation function being used. Our third contribution is an extensive Web-scale evaluation of the above algorithms on two data sets having quite different properties and behavior. The first one is the W3C dataset used in TREC-scale enterprise search, with pre-annotated entity mentions. The second is a Web-scale open-domain entity search dataset consisting of 500 million Web pages, which contain about 8 billion token spans annotated automatically with two million entities from 200,000 entity types in Wikipedia. On the TREC dataset, the performance of our system is comparable to the currently prevalent systems. On the much larger and noisier Web dataset, our system delivers significantly better performance than all other systems, with 8% MAP improvement over the closest competitor.
EMNLP
2018
http://aclweb.org/anthology/D18-1225
HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding
We aim for zero-shot localization and classification of human actions in video. Where traditional approaches rely on global attribute or object classification scores for their zero-shot knowledge transfer, our main contribution is a spatial-aware object embedding. To arrive at spatial awareness, we build our embedding on top of freely available actor and object detectors. Relevance of objects is determined in a word embedding space and further enforced with estimated spatial preferences. Besides local object awareness, we also embed global object awareness into our embedding to maximize actor and object interaction. Finally, we exploit the object positions and sizes in the spatial-aware embedding to demonstrate a new spatio-temporal action retrieval scenario with composite queries. Action localization and classification experiments on four contemporary action video datasets support our proposal. Apart from state-of-the-art results in the zero-shot localization and classification settings, our spatial-aware embedding is even competitive with recent supervised action localization alternatives.
EMNLP
2018
http://aclweb.org/anthology/D18-1226
Neural Adaptation Layers for Cross-domain Named Entity Recognition
Neural architecture for named entity recognition has achieved great success in the field of natural language processing. Currently, the dominating architecture consists of a bi-directional recurrent neural network (RNN) as the encoder and a conditional random field (CRF) as the decoder. In this paper, we propose a deformable stacked structure for named entity recognition, in which the connections between two adjacent layers are dynamically established. We evaluate the deformable stacked structure by adapting it to different layers. Our model achieves the state-of-the-art performances on the OntoNotes dataset.
EMNLP
2018
http://aclweb.org/anthology/D18-1227
Entity Linking within a Social Media Platform: A Case Study on Yelp
Hashtags are semantico-syntactic constructs used across various social networking and microblogging platforms to enable users to start a topic specific discussion or classify a post into a desired category. Segmenting and linking the entities present within the hashtags could therefore help in better understanding and extraction of information shared across the social media. However, due to lack of space delimiters in the hashtags (e.g #nsavssnowden), the segmentation of hashtags into constituent entities ("NSA" and "Edward Snowden" in this case) is not a trivial task. Most of the current state-of-the-art social media analytics systems like Sentiment Analysis and Entity Linking tend to either ignore hashtags, or treat them as a single word. In this paper, we present a context aware approach to segment and link entities in the hashtags to a knowledge base (KB) entry, based on the context within the tweet. Our approach segments and links the entities in hashtags such that the coherence between hashtag semantics and the tweet is maximized. To the best of our knowledge, no existing study addresses the issue of linking entities in hashtags for extracting semantic information. We evaluate our method on two different datasets, and demonstrate the effectiveness of our technique in improving the overall entity linking in tweets via additional semantic information provided by segmenting and linking entities in a hashtag.
EMNLP
2018
http://aclweb.org/anthology/D18-1228
Annotation of a Large Clinical Entity Corpus
Objective: To build a comprehensive corpus covering syntactic and semantic annotations of Chinese clinical texts with corresponding annotation guidelines and methods as well as to develop tools trained on the annotated corpus, which supplies baselines for research on Chinese texts in the clinical domain. Materials and methods: An iterative annotation method was proposed to train annotators and to develop annotation guidelines. Then, by using annotation quality assurance measures, a comprehensive corpus was built, containing annotations of part-of-speech (POS) tags, syntactic tags, entities, assertions, and relations. Inter-annotator agreement (IAA) was calculated to evaluate the annotation quality and a Chinese clinical text processing and information extraction system (CCTPIES) was developed based on our annotated corpus. Results: The syntactic corpus consists of 138 Chinese clinical documents with 47,424 tokens and 2553 full parsing trees, while the semantic corpus includes 992 documents that annotated 39,511 entities with their assertions and 7695 relations. IAA evaluation shows that this comprehensive corpus is of good quality, and the system modules are effective. Discussion: The annotated corpus makes a considerable contribution to natural language processing (NLP) research into Chinese texts in the clinical domain. However, this corpus has a number of limitations. Some additional types of clinical text should be introduced to improve corpus coverage and active learning methods should be utilized to promote annotation efficiency. Conclusions: In this study, several annotation guidelines and an annotation method for Chinese clinical texts were proposed, and a comprehensive corpus with its NLP modules were constructed, providing a foundation for further study of applying NLP techniques to Chinese texts in the clinical domain.
EMNLP
2018
http://aclweb.org/anthology/D18-1229
Visual Supervision in Bootstrapped Information Extraction
We propose a lightly-supervised approach for information extraction, in particular named entity classification, which combines the benefits of traditional bootstrapping, i.e., use of limited annotations and interpretability of extraction patterns, with the robust learning approaches proposed in representation learning. Our algorithm iteratively learns custom embeddings for both the multi-word entities to be extracted and the patterns that match them from a few example entities per category. We demonstrate that this representation-based approach outperforms three other state-of-the-art bootstrapping approaches on two datasets: CoNLL-2003 and OntoNotes. Additionally, using these embeddings, our approach outputs a globally-interpretable model consisting of a decision list, by ranking patterns based on their proximity to the average entity embedding in a given class. We show that this interpretable model performs close to our complete bootstrapping model, proving that representation learning can be used to produce interpretable models with small loss in performance.
EMNLP
2018
http://aclweb.org/anthology/D18-1230
Learning Named Entity Tagger using Domain-Specific Dictionary
This paper describes an approach for automatic construction of dictionaries for Named Entity Recognition (NER) using large amounts of unlabeled data and a few seed examples. We use Canonical Correlation Analysis (CCA) to obtain lower dimensional embeddings (representations) for candidate phrases and classify these phrases using a small number of labeled examples. Our method achieves 16.5% and 11.3% F-1 score improvement over co-training on disease and virus NER respectively. We also show that by adding candidate phrase embeddings as features in a sequence tagger gives better performance compared to using word embeddings.
EMNLP
2018
http://aclweb.org/anthology/D18-1231
Zero-Shot Open Entity Typing as Type-Compatible Grounding
While large-scale knowledge graphs provide vast amounts of structured facts about entities, a short textual description can often be useful to succinctly characterize an entity and its type. Unfortunately, many knowledge graph entities lack such textual descriptions. In this paper, we introduce a dynamic memory-based network that generates a short open vocabulary description of an entity by jointly leveraging induced fact embeddings as well as the dynamic context of the generated sequence of words. We demonstrate the ability of our architecture to discern relevant information for more accurate generation of type description by pitting the system against several strong baselines.
EMNLP
2018
http://aclweb.org/anthology/D18-1232
Attention-Guided Answer Distillation for Machine Reading Comprehension
Despite that current reading comprehension systems have achieved significant advancements, their promising performances are often obtained at the cost of making an ensemble of numerous models. Besides, existing approaches are also vulnerable to adversarial attacks. This paper tackles these problems by leveraging knowledge distillation, which aims to transfer knowledge from an ensemble model to a single model. We first demonstrate that vanilla knowledge distillation applied to answer span prediction is effective for reading comprehension systems. We then propose two novel approaches that not only penalize the prediction on confusing answers but also guide the training with alignment information distilled from the ensemble. Experiments show that our best student model has only a slight drop of 0.4% F1 on the SQuAD test set compared to the ensemble teacher, while running 12x faster during inference. It even outperforms the teacher on adversarial SQuAD datasets and NarrativeQA benchmark.
EMNLP
2018
http://aclweb.org/anthology/D18-1233
Interpretation of Natural Language Rules in Conversational Machine Reading
Most work in machine reading focuses on question answering problems where the answer is directly expressed in the text to read. However, many real-world question answering problems require the reading of text not because it contains the literal answer, but because it contains a recipe to derive an answer together with the reader's background knowledge. One example is the task of interpreting regulations to answer "Can I...?" or "Do I have to...?" questions such as "I am working in Canada. Do I have to carry on paying UK National Insurance?" after reading a UK government website about this topic. This task requires both the interpretation of rules and the application of background knowledge. It is further complicated due to the fact that, in practice, most questions are underspecified, and a human assistant will regularly have to ask clarification questions such as "How long have you been working abroad?" when the answer cannot be directly derived from the question and text. In this paper, we formalise this task and develop a crowd-sourcing strategy to collect 32k task instances based on real-world rules and crowd-generated questions and scenarios. We analyse the challenges of this task and assess its difficulty by evaluating the performance of rule-based and machine-learning baselines. We observe promising results when no background knowledge is necessary, and substantial room for improvement whenever background knowledge is needed.
EMNLP
2018
http://aclweb.org/anthology/D18-1234
A State-transition Framework to Answer Complex Questions over Knowledge Base
Visual Question Answering (VQA) has attracted much attention since it offers insight into the relationships between the multi-modal analysis of images and natural language. Most of the current algorithms are incapable of answering open-domain questions that require to perform reasoning beyond the image contents. To address this issue, we propose a novel framework which endows the model capabilities in answering more complex questions by leveraging massive external knowledge with dynamic memory networks. Specifically, the questions along with the corresponding images trigger a process to retrieve the relevant information in external knowledge bases, which are embedded into a continuous vector space by preserving the entity-relation structures. Afterwards, we employ dynamic memory networks to attend to the large body of facts in the knowledge graph and images, and then perform reasoning over these facts to generate corresponding answers. Extensive experiments demonstrate that our model not only achieves the state-of-the-art performance in the visual question answering task, but can also answer open-domain questions effectively by leveraging the external knowledge.
EMNLP
2018
http://aclweb.org/anthology/D18-1235
A Multi-answer Multi-task Framework for Real-world Machine Reading Comprehension
Machine Reading Comprehension (MRC) has become enormously popular recently and has attracted a lot of attention. However, existing reading comprehension datasets are mostly in English. To add diversity in reading comprehension datasets, in this paper we propose a new Chinese reading comprehension dataset for accelerating related research in the community. The proposed dataset contains two different types: cloze-style reading comprehension and user query reading comprehension, associated with large-scale training data as well as human-annotated validation and hidden test set. Along with this dataset, we also hosted the first Evaluation on Chinese Machine Reading Comprehension (CMRC-2017) and successfully attracted tens of participants, which suggest the potential impact of this dataset.
EMNLP
2018
http://aclweb.org/anthology/D18-1236
Logician and Orator: Learning from the Duality between Language and Knowledge in Open Domain
Lindenbaum method is named after the Polish logician Adolf Lindenbaum who prematurely and without a clear trace disappeared in the turmoil of the Second World War at the age of about 37. The method is based on the symbolic nature of formalized languages of deductive systems and opens a gate for applications of algebra to logic and, thereby, to Abstract algebraic logic.
EMNLP
2018
http://aclweb.org/anthology/D18-1237
MemoReader: Large-Scale Reading Comprehension through Neural Memory Controller
Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture.
EMNLP
2018
http://aclweb.org/anthology/D18-1238
Multi-Granular Sequence Encoding via Dilated Compositional Units for Reading Comprehension
We propose MRU (Multi-Range Reasoning Units), a new fast compositional encoder for machine comprehension (MC). Our proposed MRU encoders are characterized by multi-ranged gating, executing a series of parameterized contract-and-expand layers for learning gating vectors that benefit from long and short-term dependencies. The aims of our approach are as follows: (1) learning representations that are concurrently aware of long and short-term context, (2) modeling relationships between intra-document blocks and (3) fast and efficient sequence encoding. We show that our proposed encoder demonstrates promising results both as a standalone encoder and as well as a complementary building block. We conduct extensive experiments on three challenging MC datasets, namely RACE, SearchQA and NarrativeQA, achieving highly competitive performance on all. On the RACE benchmark, our model outperforms DFN (Dynamic Fusion Networks) by 1.5%-6% without using any recurrent or convolution layers. Similarly, we achieve competitive performance relative to AMANDA on the SearchQA benchmark and BiDAF on the NarrativeQA benchmark without using any LSTM/GRU layers. Finally, incorporating MRU encoders with standard BiLSTM architectures further improves performance, achieving state-of-the-art results.
EMNLP
2018
http://aclweb.org/anthology/D18-1239
Neural Compositional Denotational Semantics for Question Answering
Answering compositional questions requiring multi-step reasoning is challenging. We introduce an end-to-end differentiable model for interpreting questions about a knowledge graph (KG), which is inspired by formal approaches to semantics. Each span of text is represented by a denotation in a KG and a vector that captures ungrounded aspects of meaning. Learned composition modules recursively combine constituent spans, culminating in a grounding for the complete sentence which answers the question. For example, to interpret "not green", the model represents "green" as a set of KG entities and "not" as a trainable ungrounded vector---and then uses this vector to parameterize a composition function that performs a complement operation. For each sentence, we build a parse chart subsuming all possible parses, allowing the model to jointly learn both the composition operators and output structure by gradient descent from end-task supervision. The model learns a variety of challenging semantic operators, such as quantifiers, disjunctions and composed relations, and infers latent syntactic structure. It also generalizes well to longer questions than seen in its training data, in contrast to RNN, its tree-based variants, and semantic parsing baselines.
EMNLP
2018
http://aclweb.org/anthology/D18-1240
Cross-Pair Text Representations for Answer Sentence Selection
Convolutional neural networks (CNNs) have recently emerged as a popular building block for natural language processing (NLP). Despite their success, most existing CNN models employed in NLP share the same learned (and static) set of filters for all input sentences. In this paper, we consider an approach of using a small meta network to learn context-sensitive convolutional filters for text processing. The role of meta network is to abstract the contextual information of a sentence or document into a set of input-aware filters. We further generalize this framework to model sentence pairs, where a bidirectional filter generation mechanism is introduced to encapsulate co-dependent sentence representations. In our benchmarks on four different tasks, including ontology classification, sentiment analysis, answer sentence selection, and paraphrase identification, our proposed model, a modified CNN with context-sensitive filters, consistently outperforms the standard CNN and attention-based CNN baselines. By visualizing the learned context-sensitive filters, we further validate and rationalize the effectiveness of proposed framework.
EMNLP
2018
http://aclweb.org/anthology/D18-1241
QuAC: Question Answering in Context
With the rapid development of knowledge base,question answering based on knowledge base has been a hot research issue. In this paper, we focus on answering singlerelation factoid questions based on knowledge base. We build a question answering system and study the effect of context information on fact selection, such as entity's notable type,outdegree. Experimental results show that context information can improve the result of simple question answering.
EMNLP
2018
http://aclweb.org/anthology/D18-1242
Knowledge Base Question Answering via Encoding of Complex Query Graphs
We witness an unprecedented proliferation of knowledge graphs that record millions of entities and their relationships. While knowledge graphs are structure-flexible and content rich, they are difficult to use. The challenge lies in the gap between their overwhelming complexity and the limited database knowledge of non-professional users. If writing structured queries over simple tables is difficult, complex graphs are only harder to query. As an initial step toward improving the usability of knowledge graphs, we propose to query such data by example entity tuples, without requiring users to form complex graph queries. Our system, GQBE (Graph Query By Example), automatically derives a weighted hidden maximal query graph based on input query tuples, to capture a user's query intent. It efficiently finds and ranks the top approximate answer tuples. For fast query processing, GQBE only partially evaluates query graphs. We conducted experiments and user studies on the large Freebase and DBpedia datasets and observed appealing accuracy and efficiency. Our system provides a complementary approach to the existing keyword-based methods, facilitating user-friendly graph querying. To the best of our knowledge, there was no such proposal in the past in the context of graphs.
EMNLP
2018
http://aclweb.org/anthology/D18-1243
Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learning
Extracting relations is critical for knowledge base completion and construction in which distant supervised methods are widely used to extract relational facts automatically with the existing knowledge bases. However, the automatically constructed datasets comprise amounts of low-quality sentences containing noisy words, which is neglected by current distant supervised methods resulting in unacceptable precisions. To mitigate this problem, we propose a novel word-level distant supervised approach for relation extraction. We first build Sub-Tree Parse(STP) to remove noisy words that are irrelevant to relations. Then we construct a neural network inputting the sub-tree while applying the entity-wise attention to identify the important semantic features of relational words in each instance. To make our model more robust against noisy words, we initialize our network with a priori knowledge learned from the relevant task of entity classification by transfer learning. We conduct extensive experiments using the corpora of New York Times(NYT) and Freebase. Experiments show that our approach is effective and improves the area of Precision/Recall(PR) from 0.35 to 0.39 over the state-of-the-art work.
EMNLP
2018
http://aclweb.org/anthology/D18-1244
Graph Convolution over Pruned Dependency Trees Improves Relation Extraction
Dependency trees help relation extraction models capture long-range relations between words. However, existing dependency-based models either neglect crucial information (e.g., negation) by pruning the dependency trees too aggressively, or are computationally inefficient because it is difficult to parallelize over different tree structures. We propose an extension of graph convolutional networks that is tailored for relation extraction, which pools information over arbitrary dependency structures efficiently in parallel. To incorporate relevant information while maximally removing irrelevant content, we further apply a novel pruning strategy to the input trees by keeping words immediately around the shortest path between the two entities among which a relation might hold. The resulting model achieves state-of-the-art performance on the large-scale TACRED dataset, outperforming existing sequence and dependency-based neural models. We also show through detailed analysis that this model has complementary strengths to sequence models, and combining them further improves the state of the art.
EMNLP
2018
http://aclweb.org/anthology/D18-1245
Multi-Level Structured Self-Attentions for Distantly Supervised Relation Extraction
We propose a framework to improve performance of distantly-supervised relation extraction, by jointly learning to solve two related tasks: concept-instance extraction and relation extraction. We combine this with a novel use of document structure: in some small, well-structured corpora, sections can be identified that correspond to relation arguments, and distantly-labeled examples from such sections tend to have good precision. Using these as seeds we extract additional relation examples by applying label propagation on a graph composed of noisy examples extracted from a large unstructured testing corpus. Combined with the soft constraint that concept examples should have the same type as the second argument of the relation, we get significant improvements over several state-of-the-art approaches to distantly-supervised relation extraction.
EMNLP
2018
http://aclweb.org/anthology/D18-1246
N-ary Relation Extraction using Graph-State LSTM
We propose in this paper a combined model of Long Short Term Memory and Convolutional Neural Networks (LSTM-CNN) that exploits word embeddings and positional embeddings for cross-sentence n-ary relation extraction. The proposed model brings together the properties of both LSTMs and CNNs, to simultaneously exploit long-range sequential information and capture most informative features, essential for cross-sentence n-ary relation extraction. The LSTM-CNN model is evaluated on standard dataset on cross-sentence n-ary relation extraction, where it significantly outperforms baselines such as CNNs, LSTMs and also a combined CNN-LSTM model. The paper also shows that the LSTM-CNN model outperforms the current state-of-the-art methods on cross-sentence n-ary relation extraction.
EMNLP
2018
http://aclweb.org/anthology/D18-1247
Hierarchical Relation Extraction with Coarse-to-Fine Grained Attention
Time series prediction has been studied in a variety of domains. However, it is still challenging to predict future series given historical observations and past exogenous data. Existing methods either fail to consider the interactions among different components of exogenous variables which may affect the prediction accuracy, or cannot model the correlations between exogenous data and target data. Besides, the inherent temporal dynamics of exogenous data are also related to the target series prediction, and thus should be considered as well. To address these issues, we propose an end-to-end deep learning model, i.e., Hierarchical attention-based Recurrent Highway Network (HRHN), which incorporates spatio-temporal feature extraction of exogenous variables and temporal dynamics modeling of target variables into a single framework. Moreover, by introducing the hierarchical attention mechanism, HRHN can adaptively select the relevant exogenous features in different semantic levels. We carry out comprehensive empirical evaluations with various methods over several datasets, and show that HRHN outperforms the state of the arts in time series prediction, especially in capturing sudden changes and sudden oscillations of time series.
EMNLP
2018
http://aclweb.org/anthology/D18-1248
Label-Free Distant Supervision for Relation Extraction via Knowledge Graph Embedding
The growing demand for structured knowledge has led to great interest in relation extraction, especially in cases with limited supervision. However, existing distance supervision approaches only extract relations expressed in single sentences. In general, cross-sentence relation extraction is under-explored, even in the supervised-learning setting. In this paper, we propose the first approach for applying distant supervision to cross- sentence relation extraction. At the core of our approach is a graph representation that can incorporate both standard dependencies and discourse relations, thus providing a unifying way to model relations within and across sentences. We extract features from multiple paths in this graph, increasing accuracy and robustness when confronted with linguistic variation and analysis error. Experiments on an important extraction task for precision medicine show that our approach can learn an accurate cross-sentence extractor, using only a small existing knowledge base and unlabeled text from biomedical research articles. Compared to the existing distant supervision paradigm, our approach extracted twice as many relations at similar precision, thus demonstrating the prevalence of cross-sentence relations and the promise of our approach.
EMNLP
2018
http://aclweb.org/anthology/D18-1249
Extracting Entities and Relations with Joint Minimum Risk Training
The task of end-to-end relation extraction consists of two sub-tasks: i) identifying entity mentions along with their types and ii) recognizing semantic relations among the entity mention pairs. %Identifying entity mentions along with their types and recognizing semantic relations among the entity mentions, are two very important problems in Information Extraction. It has been shown that for better performance, it is necessary to address these two sub-tasks jointly. We propose an approach for simultaneous extraction of entity mentions and relations in a sentence, by using inference in Markov Logic Networks (MLN). We learn three different classifiers : i) local entity classifier, ii) local relation classifier and iii) "pipeline" relation classifier which uses predictions of the local entity classifier. Predictions of these classifiers may be inconsistent with each other. We represent these predictions along with some domain knowledge using weighted first-order logic rules in an MLN and perform joint inference over the MLN to obtain a global output with minimum inconsistencies. Experiments on the ACE (Automatic Content Extraction) 2004 dataset demonstrate that our approach of joint extraction using MLNs outperforms the baselines of individual classifiers. Our end-to-end relation extraction performance is better than 2 out of 3 previous results reported on the ACE 2004 dataset.
EMNLP
2018
http://aclweb.org/anthology/D18-1250
Large-scale Exploration of Neural Relation Classification Architectures
Nowadays, neural networks play an important role in the task of relation classification. By designing different neural architectures, researchers have improved the performance to a large extent in comparison with traditional methods. However, existing neural networks for relation classification are usually of shallow architectures (e.g., one-layer convolutional neural networks or recurrent networks). They may fail to explore the potential representation space in different abstraction levels. In this paper, we propose deep recurrent neural networks (DRNNs) for relation classification to tackle this challenge. Further, we propose a data augmentation method by leveraging the directionality of relations. We evaluated our DRNNs on the SemEval-2010 Task~8, and achieve an F1-score of 86.1%, outperforming previous state-of-the-art recorded results.
EMNLP
2018
http://aclweb.org/anthology/D18-1251
Possessors Change Over Time: A Case Study with Artworks
A significant number of oil paintings produced by Georgia O'Keeffe (1887-1986) show surface protrusions of varying width, up to several hundreds of microns. These protrusions are similar to those described in the art conservation literature as metallic soaps. Since the presence of these protrusions raises questions about the state of conservation and long-term prospects for deterioration of these artworks, a 3D-imaging technique, photometric stereo using ultraviolet illumination, was developed for the long-term monitoring of the surface-shape of the protrusions and the surrounding paint. Because the UV fluorescence response of painting materials is isotropic, errors typically caused by non-Lambertian (anisotropic) specularities when using visible reflected light can be avoided providing a more accurate estimation of shape. As an added benefit, fluorescence provides additional contrast information contributing to materials characterization. The developed methodology aims to detect, characterize, and quantify the distribution of micro-protrusions and their development over the surface of entire artworks. Combined with a set of analytical in-situ techniques, and computational tools, this approach constitutes a novel methodology to investigate the selective distribution of protrusions in correlation with the composition of painting materials at the macro-scale. While focused on O'Keeffe's paintings as a case study, we expect the proposed approach to have broader significance by providing a non-invasive protocol to the conservation community to probe topological changes for any relatively flat painted surface of an artwork, and more specifically to monitor the dynamic formation of protrusions, in relation to paint composition and modifications of environmental conditions, loans, exhibitions and storage over the long-term.
EMNLP
2018
http://aclweb.org/anthology/D18-1252
Using Lexical Alignment and Referring Ability to Address Data Sparsity in Situated Dialog Reference Resolution
This paper presents a dataset collected from natural dialogs which enables to test the ability of dialog systems to learn new facts from user utterances throughout the dialog. This interactive learning will help with one of the most prevailing problems of open domain dialog system, which is the sparsity of facts a dialog system can reason about. The proposed dataset, consisting of 1900 collected dialogs, allows simulation of an interactive gaining of denotations and questions explanations from users which can be used for the interactive learning.
EMNLP
2018
http://aclweb.org/anthology/D18-1253
Subgoal Discovery for Hierarchical Dialogue Policy Learning
Developing agents to engage in complex goal-oriented dialogues is challenging partly because the main learning signals are very sparse in long conversations. In this paper, we propose a divide-and-conquer approach that discovers and exploits the hidden structure of the task to enable efficient policy learning. First, given successful example dialogues, we propose the Subgoal Discovery Network (SDN) to divide a complex goal-oriented task into a set of simpler subgoals in an unsupervised fashion. We then use these subgoals to learn a multi-level policy by hierarchical reinforcement learning. We demonstrate our method by building a dialogue agent for the composite task of travel planning. Experiments with simulated and real users show that our approach performs competitively against a state-of-the-art method that requires human-defined subgoals. Moreover, we show that the learned subgoals are often human comprehensible.
EMNLP
2018
http://aclweb.org/anthology/D18-1254
Supervised Clustering of Questions into Intents for Dialog System Applications
There are several dialog frameworks which allow manual specification of intents and rule based dialog flow. The rule based framework provides good control to dialog designers at the expense of being more time consuming and laborious. The job of a dialog designer can be reduced if we could identify pairs of user intents and corresponding responses automatically from prior conversations between users and agents. In this paper we propose an approach to find these frequent user utterances (which serve as examples for intents) and corresponding agent responses. We propose a novel SimCluster algorithm that extends standard K-means algorithm to simultaneously cluster user utterances and agent utterances by taking their adjacency information into account. The method also aligns these clusters to provide pairs of intents and response groups. We compare our results with those produced by using simple Kmeans clustering on a real dataset and observe upto 10% absolute improvement in F1-scores. Through our experiments on synthetic dataset, we show that our algorithm gains more advantage over K-means algorithm when the data has large variance.
EMNLP
2018
http://aclweb.org/anthology/D18-1255
Towards Exploiting Background Knowledge for Building Conversation Systems
Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task i.e, given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge.
EMNLP
2018
http://aclweb.org/anthology/D18-1256
Decoupling Strategy and Generation in Negotiation Dialogues
We consider negotiation settings in which two agents use natural language to bargain on goods. Agents need to decide on both high-level strategy (e.g., proposing \$50) and the execution of that strategy (e.g., generating "The bike is brand new. Selling for just \$50."). Recent work on negotiation trains neural models, but their end-to-end nature makes it hard to control their strategy, and reinforcement learning tends to lead to degenerate solutions. In this paper, we propose a modular approach based on coarse di- alogue acts (e.g., propose(price=50)) that decouples strategy and generation. We show that we can flexibly set the strategy using supervised learning, reinforcement learning, or domain-specific knowledge without degeneracy, while our retrieval-based generation can maintain context-awareness and produce diverse utterances. We test our approach on the recently proposed DEALORNODEAL game, and we also collect a richer dataset based on real items on Craigslist. Human evaluation shows that our systems achieve higher task success rate and more human-like negotiation behavior than previous approaches.
EMNLP
2018
http://aclweb.org/anthology/D18-1257
Large-scale Cloze Test Dataset Created by Teachers
Cloze tests are widely adopted in language exams to evaluate students' language proficiency. In this paper, we propose the first large-scale human-created cloze test dataset CLOTH, containing questions used in middle-school and high-school language exams. With missing blanks carefully created by teachers and candidate choices purposely designed to be nuanced, CLOTH requires a deeper language understanding and a wider attention span than previously automatically-generated cloze datasets. We test the performance of dedicatedly designed baseline models including a language model trained on the One Billion Word Corpus and show humans outperform them by a significant margin. We investigate the source of the performance gap, trace model deficiencies to some distinct properties of CLOTH, and identify the limited ability of comprehending the long-term context to be the key bottleneck.
EMNLP
2018
http://aclweb.org/anthology/D18-1258
emrQA: A Large Corpus for Question Answering on Electronic Medical Records
We propose a novel methodology to generate domain-specific large-scale question answering (QA) datasets by re-purposing existing annotations for other NLP tasks. We demonstrate an instance of this methodology in generating a large-scale QA dataset for electronic medical records by leveraging existing expert annotations on clinical notes for various NLP tasks from the community shared i2b2 datasets. The resulting corpus (emrQA) has 1 million question-logical form and 400,000+ question-answer evidence pairs. We characterize the dataset and explore its learning potential by training baseline models for question to logical form and question to answer mapping.
EMNLP
2018
http://aclweb.org/anthology/D18-1259
HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.
EMNLP
2018
http://aclweb.org/anthology/D18-1260
Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering
We present a new kind of question answering dataset, OpenBookQA, modeled after open book exams for assessing human understanding of a subject. The open book that comes with our questions is a set of 1329 elementary level science facts. Roughly 6000 questions probe an understanding of these facts and their application to novel situations. This requires combining an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a suit of armor is made of metal) obtained from other sources. While existing QA datasets over documents or knowledge bases, being generally self-contained, focus on linguistic understanding, OpenBookQA probes a deeper understanding of both the topic---in the context of common knowledge---and the language it is expressed in. Human performance on OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform surprisingly poorly, worse than several simple neural baselines we develop. Our oracle experiments designed to circumvent the knowledge retrieval bottleneck demonstrate the value of both the open book and additional facts. We leave it as a challenge to solve the retrieval problem in this multi-hop setting and to close the large gap to human performance.
EMNLP
2018
http://aclweb.org/anthology/D18-1261
Evaluating Theory of Mind in Question Answering
We propose a new dataset for evaluating question answering models with respect to their capacity to reason about beliefs. Our tasks are inspired by theory-of-mind experiments that examine whether children are able to reason about the beliefs of others, in particular when those beliefs differ from reality. We evaluate a number of recent neural models with memory augmentation. We find that all fail on our tasks, which require keeping track of inconsistent states of the world; moreover, the models' accuracy decreases notably when random sentences are introduced to the tasks at test.
EMNLP
2018
http://aclweb.org/anthology/D18-1262
A Unified Syntax-aware Framework for Semantic Role Labeling
Label embedding plays an important role in zero-shot learning. Side information such as attributes, semantic text representations, and label hierarchy are commonly used as the label embedding in zero-shot classification tasks. However, the label embedding used in former works considers either only one single context of the label, or multiple contexts without dependency. Therefore, different contexts of the label may not be well aligned in the embedding space to preserve the relatedness between labels, which will result in poor interpretability of the label embedding. In this paper, we propose a Multi-Context Label Embedding (MCLE) approach to incorporate multiple label contexts, e.g., label hierarchy and attributes, within a unified matrix factorization framework. To be specific, we model each single context by a matrix factorization formula and introduce a shared variable to capture the dependency among different contexts. Furthermore, we enforce sparsity constraint on our multi-context framework to strengthen the interpretability of the learned label embedding. Extensive experiments on two real-world datasets demonstrate the superiority of our MCLE in label description and zero-shot image classification.
EMNLP
2018
http://aclweb.org/anthology/D18-1263
Semantics as a Foreign Language
Using paraphrases, the expression of the same semantic meaning in different words, to improve generalization and translation performance is often useful. However, prior works only explore the use of paraphrases at the word or phrase level, not at the sentence or document level. Unlike previous works, we use different translations of the whole training data that are consistent in structure as paraphrases at the corpus level. Our corpus contains parallel paraphrases in multiple languages from various sources. We treat paraphrases as foreign languages, tag source sentences with paraphrase labels, and train in the style of multilingual Neural Machine Translation (NMT). Experimental results indicate that adding paraphrases improves the rare word translation, increases entropy and diversity in lexical choice. Moreover, adding the source paraphrases improves translation performance more effectively than adding the target paraphrases. Combining both the source and the target paraphrases boosts performance further; combining paraphrases with multilingual data also helps but has mixed performance. We achieve a BLEU score of 57.2 for French-to-English translation, training on 24 paraphrases of the Bible, which is ~+27 above the WMT'14 baseline.
EMNLP
2018
http://aclweb.org/anthology/D18-1264
An AMR Aligner Tuned by Transition-based Parser
In this paper, we propose a new rich resource enhanced AMR aligner which produces multiple alignments and a new transition system for AMR parsing along with its oracle parser. Our aligner is further tuned by our oracle parser via picking the alignment that leads to the highest-scored achievable AMR graph. Experimental results show that our aligner outperforms the rule-based aligner in previous work by achieving higher alignment F1 score and consistently improving two open-sourced AMR parsers. Based on our aligner and transition system, we develop a transition-based AMR parser that parses a sentence into its AMR graph directly. An ensemble of our parsers with only words and POS tags as input leads to 68.4 Smatch F1 score.
EMNLP
2018
http://aclweb.org/anthology/D18-1265
Dependency-based Hybrid Trees for Semantic Parsing
We propose a novel dependency-based hybrid tree model for semantic parsing, which converts natural language utterance into machine interpretable meaning representations. Unlike previous state-of-the-art models, the semantic information is interpreted as the latent dependency between the natural language words in our joint representation. Such dependency information can capture the interactions between the semantics and natural language words. We integrate a neural component into our model and propose an efficient dynamic-programming algorithm to perform tractable inference. Through extensive experiments on the standard multilingual GeoQuery dataset with eight languages, we demonstrate that our proposed approach is able to achieve state-of-the-art performance across several languages. Analysis also justifies the effectiveness of using our new dependency-based representation.
EMNLP
2018
http://aclweb.org/anthology/D18-1266
Policy Shaping and Generalized Update Equations for Semantic Parsing from Denotations
Semantic parsing from denotations faces two key challenges in model training: (1) given only the denotations (e.g., answers), search for good candidate semantic parses, and (2) choose the best model update algorithm. We propose effective and general solutions to each of them. Using policy shaping, we bias the search procedure towards semantic parses that are more compatible to the text, which provide better supervision signals for training. In addition, we propose an update equation that generalizes three different families of learning algorithms, which enables fast model exploration. When experimented on a recently proposed sequential question answering dataset, our framework leads to a new state-of-the-art model that outperforms previous work by 5.0% absolute on exact match accuracy.
EMNLP
2018
http://aclweb.org/anthology/D18-1267
Sentence Compression for Arbitrary Languages via Multilingual Pivoting
Multilinguality is gradually becoming ubiquitous in the sense that more and more researchers have successfully shown that using additional languages help improve the results in many Natural Language Processing tasks. Multilingual Multiway Corpora (MMC) contain the same sentence in multiple languages. Such corpora have been primarily used for Multi-Source and Pivot Language Machine Translation but are also useful for developing multilingual sequence taggers by transfer learning. While these corpora are available, they are not organized for multilingual experiments and researchers need to write boilerplate code every time they want to use said corpora. Moreover, because there is no official MMC collection it becomes difficult to compare against existing approaches. As such we present our work on creating a unified and systematically organized repository of MMC spanning a large number of languages. We also provide training, development and test splits for corpora where official splits are unavailable. We hope that this will help speed up the pace of multilingual NLP research and ensure that NLP researchers obtain results that are more trustable since they can be compared easily. We indicate corpora sources, extraction procedures if any and relevant statistics. We also make our collection public for research purposes.
EMNLP
2018
http://aclweb.org/anthology/D18-1268
Unsupervised Cross-lingual Transfer of Word Embedding Spaces
Cross-lingual transfer of word embeddings aims to establish the semantic mappings among words in different languages by learning the transformation functions over the corresponding word embedding spaces. Successfully solving this problem would benefit many downstream tasks such as to translate text classification models from resource-rich languages (e.g. English) to low-resource languages. Supervised methods for this problem rely on the availability of cross-lingual supervision, either using parallel corpora or bilingual lexicons as the labeled data for training, which may not be available for many low resource languages. This paper proposes an unsupervised learning approach that does not require any cross-lingual labeled data. Given two monolingual word embedding spaces for any language pair, our algorithm optimizes the transformation functions in both directions simultaneously based on distributional matching as well as minimizing the back-translation losses. We use a neural network implementation to calculate the Sinkhorn distance, a well-defined distributional similarity measure, and optimize our objective through back-propagation. Our evaluation on benchmark datasets for bilingual lexicon induction and cross-lingual word similarity prediction shows stronger or competitive performance of the proposed method compared to other state-of-the-art supervised and unsupervised baseline methods over many language pairs.
EMNLP
2018
http://aclweb.org/anthology/D18-1269
XNLI: Evaluating Cross-lingual Sentence Representations
Matching natural language sentences is central for many applications such as information retrieval and question answering. Existing deep models rely on a single sentence representation or multiple granularity representations for matching. However, such methods cannot well capture the contextualized local information in the matching process. To tackle this problem, we present a new deep architecture to match two sentences with multiple positional sentence representations. Specifically, each positional sentence representation is a sentence representation at this position, generated by a bidirectional long short term memory (Bi-LSTM). The matching score is finally produced by aggregating interactions between these different positional sentence representations, through $k$-Max pooling and a multi-layer perceptron. Our model has several advantages: (1) By using Bi-LSTM, rich context of the whole sentence is leveraged to capture the contextualized local information in each positional sentence representation; (2) By matching with multiple positional sentence representations, it is flexible to aggregate different important contextualized local information in a sentence to support the matching; (3) Experiments on different tasks such as question answering and sentence completion demonstrate the superiority of our model.
EMNLP
2018
http://aclweb.org/anthology/D18-1270
Joint Multilingual Supervision for Cross-lingual Entity Linking
Cross-lingual Entity Linking (XEL) aims to ground entity mentions written in any language to an English Knowledge Base (KB), such as Wikipedia. XEL for most languages is challenging, owing to limited availability of resources as supervision. We address this challenge by developing the first XEL approach that combines supervision from multiple languages jointly. This enables our approach to: (a) augment the limited supervision in the target language with additional supervision from a high-resource language (like English), and (b) train a single entity linking model for multiple languages, improving upon individually trained models for each language. Extensive evaluation on three benchmark datasets across 8 languages shows that our approach significantly improves over the current state-of-the-art. We also provide analyses in two limited resource settings: (a) zero-shot setting, when no supervision in the target language is available, and in (b) low-resource setting, when some supervision in the target language is available. Our analysis provides insights into the limitations of zero-shot XEL approaches in realistic scenarios, and shows the value of joint supervision in low-resource settings.
EMNLP
2018
http://aclweb.org/anthology/D18-1271
Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Language Knowledge Acquisition
Aligning coordinated text streams from multiple sources and multiple languages has opened many new research venues on cross-lingual knowledge discovery. In this paper we aim to advance state-of-the-art by: (1). extending coarse-grained topic-level knowledge mining to fine-grained information units such as entities and events; (2). following a novel Data-to-Network-to-Knowledge (D2N2K) paradigm to construct and utilize network structures to capture and propagate reliable evidence. We introduce a novel Burst Information Network (BINet) representation that can display the most important information and illustrate the connections among bursty entities, events and keywords in the corpus. We propose an effective approach to construct and decipher BINets, incorporating novel criteria based on multi-dimensional clues from pronunciation, translation, burst, neighbor and graph topological structure. The experimental results on Chinese and English coordinated text streams show that our approach can accurately decipher the nodes with high confidence in the BINets and that the algorithm can be efficiently run in parallel, which makes it possible to apply it to huge amounts of streaming data for never-ending language and information decipherment.
EMNLP
2018
http://aclweb.org/anthology/D18-1272
WECA:A WordNet-Encoded Collocation-Attention Network for Homographic Pun Recognition
The article describes a model of automatic interpretation of English puns, based on Roget's Thesaurus, and its implementation, PunFields. In a pun, the algorithm discovers two groups of words that belong to two main semantic fields. The fields become a semantic vector based on which an SVM classifier learns to recognize puns. A rule-based model is then applied for recognition of intentionally ambiguous (target) words and their definitions. In SemEval Task 7 PunFields shows a considerably good result in pun classification, but requires improvement in searching for the target word and its definition.
EMNLP
2018
http://aclweb.org/anthology/D18-1273
A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Check
Ancient Chinese brings the wisdom and spirit culture of the Chinese nation. Automatically translation from ancient Chinese to modern Chinese helps to inherit and carry forward the quintessence of the ancients. In this paper, we propose an Ancient-Modern Chinese clause alignment approach and apply it to create a large scale Ancient-Modern Chinese parallel corpus which contains about 1.24M bilingual pairs. To our best knowledge, this is the first large high-quality Ancient-Modern Chinese dataset. Furthermore, we train the SMT and various NMT based models on this dataset and provide a strong baseline for this task
EMNLP
2018
http://aclweb.org/anthology/D18-1274
Neural Quality Estimation of Grammatical Error Correction
We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-level, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus.
EMNLP
2018