url
stringlengths
36
36
title
stringlengths
17
132
abstract
stringlengths
112
1.92k
venue
stringclasses
1 value
year
stringclasses
3 values
http://aclweb.org/anthology/D18-1275
Transferring from Formal Newswire Domain with Hypernet for Twitter POS Tagging
Use of social media has grown dramatically during the last few years. Users follow informal languages in communicating through social media. The language of communication is often mixed in nature, where people transcribe their regional language with English and this technique is found to be extremely popular. Natural language processing (NLP) aims to infer the information from these text where Part-of-Speech (PoS) tagging plays an important role in getting the prosody of the written text. For the task of PoS tagging on Code-Mixed Indian Social Media Text, we develop a supervised system based on Conditional Random Field classifier. In order to tackle the problem effectively, we have focused on extracting rich linguistic features. We participate in three different language pairs, ie. English-Hindi, English-Bengali and English-Telugu on three different social media platforms, Twitter, Facebook & WhatsApp. The proposed system is able to successfully assign coarse as well as fine-grained PoS tag labels for a given a code-mixed sentence. Experiments show that our system is quite generic that shows encouraging performance levels on all the three language pairs in all the domains.
EMNLP
2018
http://aclweb.org/anthology/D18-1276
Free as in Free Word Order: An Energy Based Model for Word Segmentation and Morphological Tagging in Sanskrit
The configurational information in sentences of a free word order language such as Sanskrit is of limited use. Thus, the context of the entire sentence will be desirable even for basic processing tasks such as word segmentation. We propose a structured prediction framework that jointly solves the word segmentation and morphological tagging tasks in Sanskrit. We build an energy based model where we adopt approaches generally employed in graph based parsing techniques (McDonald et al., 2005a; Carreras, 2007). Our model outperforms the state of the art with an F-Score of 96.92 (percentage improvement of 7.06%) while using less than one-tenth of the task-specific training data. We find that the use of a graph based ap- proach instead of a traditional lattice-based sequential labelling approach leads to a percentage gain of 12.6% in F-Score for the segmentation task.
EMNLP
2018
http://aclweb.org/anthology/D18-1277
A Challenge Set and Methods for Noun-Verb Ambiguity
Learning a classifier from ambiguously labeled face images is challenging since training images are not always explicitly-labeled. For instance, face images of two persons in a news photo are not explicitly labeled by their names in the caption. We propose a Matrix Completion for Ambiguity Resolution (MCar) method for predicting the actual labels from ambiguously labeled images. This step is followed by learning a standard supervised classifier from the disambiguated labels to classify new images. To prevent the majority labels from dominating the result of MCar, we generalize MCar to a weighted MCar (WMCar) that handles label imbalance. Since WMCar outputs a soft labeling vector of reduced ambiguity for each instance, we can iteratively refine it by feeding it as the input to WMCar. Nevertheless, such an iterative implementation can be affected by the noisy soft labeling vectors, and thus the performance may degrade. Our proposed Iterative Candidate Elimination (ICE) procedure makes the iterative ambiguity resolution possible by gradually eliminating a portion of least likely candidates in ambiguously labeled face. We further extend MCar to incorporate the labeling constraints between instances when such prior knowledge is available. Compared to existing methods, our approach demonstrates improvement on several ambiguously labeled datasets.
EMNLP
2018
http://aclweb.org/anthology/D18-1278
What do character-level models learn about morphology? The case of dependency parsing
When parsing morphologically-rich languages with neural models, it is beneficial to model input at the character level, and it has been claimed that this is because character-level models learn morphology. We test these claims by comparing character-level models to an oracle with access to explicit morphological analysis on twelve languages with varying morphological typologies. Our results highlight many strengths of character-level models, but also show that they are poor at disambiguating some words, particularly in the face of case syncretism. We then demonstrate that explicitly modeling morphological case improves our best model, showing that character-level models can benefit from targeted forms of explicit morphological modeling.
EMNLP
2018
http://aclweb.org/anthology/D18-1279
Learning Better Internal Structure of Words for Sequence Labeling
Character-based neural models have recently proven very useful for many NLP tasks. However, there is a gap of sophistication between methods for learning representations of sentences and words. While most character models for learning representations of sentences are deep and complex, models for learning representations of words are shallow and simple. Also, in spite of considerable research on learning character embeddings, it is still not clear which kind of architecture is the best for capturing character-to-word representations. To address these questions, we first investigate the gaps between methods for learning word and sentence representations. We conduct detailed experiments and comparisons of different state-of-the-art convolutional models, and also investigate the advantages and disadvantages of their constituents. Furthermore, we propose IntNet, a funnel-shaped wide convolutional neural architecture with no down-sampling for learning representations of the internal structure of words by composing their characters from limited, supervised training corpora. We evaluate our proposed model on six sequence labeling datasets, including named entity recognition, part-of-speech tagging, and syntactic chunking. Our in-depth analysis shows that IntNet significantly outperforms other character embedding models and obtains new state-of-the-art performance without relying on any external knowledge or resources.
EMNLP
2018
http://aclweb.org/anthology/D18-1280
ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection
Emotion recognition has become an important field of research in Human Computer Interactions as we improve upon the techniques for modelling the various aspects of behaviour. With the advancement of technology our understanding of emotions are advancing, there is a growing need for automatic emotion recognition systems. One of the directions the research is heading is the use of Neural Networks which are adept at estimating complex functions that depend on a large number and diverse source of input data. In this paper we attempt to exploit this effectiveness of Neural networks to enable us to perform multimodal Emotion recognition on IEMOCAP dataset using data from Speech, Text, and Motion capture data from face expressions, rotation and hand movements. Prior research has concentrated on Emotion detection from Speech on the IEMOCAP dataset, but our approach is the first that uses the multiple modes of data offered by IEMOCAP for a more robust and accurate emotion detection.
EMNLP
2018
http://aclweb.org/anthology/D18-1281
Discriminative Learning of Open-Vocabulary Object Retrieval and Localization by Negative Phrase Augmentation
Thanks to the success of object detection technology, we can retrieve objects of the specified classes even from huge image collections. However, the current state-of-the-art object detectors (such as Faster R-CNN) can only handle pre-specified classes. In addition, large amounts of positive and negative visual samples are required for training. In this paper, we address the problem of open-vocabulary object retrieval and localization, where the target object is specified by a textual query (e.g., a word or phrase). We first propose Query-Adaptive R-CNN, a simple extension of Faster R-CNN adapted to open-vocabulary queries, by transforming the text embedding vector into an object classifier and localization regressor. Then, for discriminative training, we then propose negative phrase augmentation (NPA) to mine hard negative samples which are visually similar to the query and at the same time semantically mutually exclusive of the query. The proposed method can retrieve and localize objects specified by a textual query from one million images in only 0.5 seconds with high precision.
EMNLP
2018
http://aclweb.org/anthology/D18-1282
Grounding Semantic Roles in Images
Semantic object parts can be useful for several visual recognition tasks. Lately, these tasks have been addressed using Convolutional Neural Networks (CNN), achieving outstanding results. In this work we study whether CNNs learn semantic parts in their internal representation. We investigate the responses of convolutional filters and try to associate their stimuli with semantic parts. We perform two extensive quantitative analyses. First, we use ground-truth part bounding-boxes from the PASCAL-Part dataset to determine how many of those semantic parts emerge in the CNN. We explore this emergence for different layers, network depths, and supervision levels. Second, we collect human judgements in order to study what fraction of all filters systematically fire on any semantic part, even if not annotated in PASCAL-Part. Moreover, we explore several connections between discriminative power and semantics. We find out which are the most discriminative filters for object recognition, and analyze whether they respond to semantic parts or to other image patches. We also investigate the other direction: we determine which semantic parts are the most discriminative and whether they correspond to those parts emerging in the network. This enables to gain an even deeper understanding of the role of semantic parts in the network.
EMNLP
2018
http://aclweb.org/anthology/D18-1283
Commonsense Justification for Action Explanation
The purpose of this paper is twofold: (i) we argue that the structure of commonsense knowledge must be discovered, rather than invented; and (ii) we argue that natural language, which is the best known theory of our (shared) commonsense knowledge, should itself be used as a guide to discovering the structure of commonsense knowledge. In addition to suggesting a systematic method to the discovery of the structure of commonsense knowledge, the method we propose seems to also provide an explanation for a number of phenomena in natural language, such as metaphor, intensionality, and the semantics of nominal compounds. Admittedly, our ultimate goal is quite ambitious, and it is no less than the systematic 'discovery' of a well-typed ontology of commonsense knowledge, and the subsequent formulation of the long-awaited goal of a meaning algebra.
EMNLP
2018
http://aclweb.org/anthology/D18-1284
Learning Personas from Dialogue with Attentive Memory Networks
The ability to infer persona from dialogue can have applications in areas ranging from computational narrative analysis to personalized dialogue generation. We introduce neural models to learn persona embeddings in a supervised character trope classification task. The models encode dialogue snippets from IMDB into representations that can capture the various categories of film characters. The best-performing models use a multi-level attention mechanism over a set of utterances. We also utilize prior knowledge in the form of textual descriptions of the different tropes. We apply the learned embeddings to find similar characters across different movies, and cluster movies according to the distribution of the embeddings. The use of short conversational text as input, and the ability to learn from prior knowledge using memory, suggests these methods could be applied to other domains.
EMNLP
2018
http://aclweb.org/anthology/D18-1285
Grounding language acquisition by training semantic parsers using captioned videos
In this paper, the problem of describing visual contents of a video sequence with natural language is addressed. Unlike previous video captioning work mainly exploiting the cues of video contents to make a language description, we propose a reconstruction network (RecNet) with a novel encoder-decoder-reconstructor architecture, which leverages both the forward (video to sentence) and backward (sentence to video) flows for video captioning. Specifically, the encoder-decoder makes use of the forward flow to produce the sentence description based on the encoded video semantic features. Two types of reconstructors are customized to employ the backward flow and reproduce the video features based on the hidden state sequence generated by the decoder. The generation loss yielded by the encoder-decoder and the reconstruction loss introduced by the reconstructor are jointly drawn into training the proposed RecNet in an end-to-end fashion. Experimental results on benchmark datasets demonstrate that the proposed reconstructor can boost the encoder-decoder models and leads to significant gains in video caption accuracy.
EMNLP
2018
http://aclweb.org/anthology/D18-1286
Translating Navigation Instructions in Natural Language to a High-Level Plan for Behavioral Robot Navigation
We propose an end-to-end deep learning model for translating free-form natural language instructions to a high-level plan for behavioral robot navigation. We use attention models to connect information from both the user instructions and a topological representation of the environment. We evaluate our model's performance on a new dataset containing 10,050 pairs of navigation instructions. Our model significantly outperforms baseline approaches. Furthermore, our results suggest that it is possible to leverage the environment map as a relevant knowledge base to facilitate the translation of free-form navigational instruction.
EMNLP
2018
http://aclweb.org/anthology/D18-1287
Mapping Instructions to Actions in 3D Environments with Visual Goal Prediction
We propose to decompose instruction execution to goal prediction and action generation. We design a model that maps raw visual observations to goals using LINGUNET, a language-conditioned image generation network, and then generates the actions required to complete them. Our model is trained from demonstration only without external resources. To evaluate our approach, we introduce two benchmarks for instruction following: LANI, a navigation task; and CHAI, where an agent executes household instructions. Our evaluation demonstrates the advantages of our model decomposition, and illustrates the challenges posed by our new benchmarks.
EMNLP
2018
http://aclweb.org/anthology/D18-1288
Deconvolutional Time Series Regression: A Technique for Modeling Temporally Diffuse Effects
A great improvement to the insight on brain function that we can get from fMRI data can come from effective connectivity analysis, in which the flow of information between even remote brain regions is inferred by the parameters of a predictive dynamical model. As opposed to biologically inspired models, some techniques as Granger causality (GC) are purely data-driven and rely on statistical prediction and temporal precedence. While powerful and widely applicable, this approach could suffer from two main limitations when applied to BOLD fMRI data: confounding effect of hemodynamic response function (HRF) and conditioning to a large number of variables in presence of short time series. For task-related fMRI, neural population dynamics can be captured by modeling signal dynamics with explicit exogenous inputs; for resting-state fMRI on the other hand, the absence of explicit inputs makes this task more difficult, unless relying on some specific prior physiological hypothesis. In order to overcome these issues and to allow a more general approach, here we present a simple and novel blind-deconvolution technique for BOLD-fMRI signal. Coming to the second limitation, a fully multivariate conditioning with short and noisy data leads to computational problems due to overfitting. Furthermore, conceptual issues arise in presence of redundancy. We thus apply partial conditioning to a limited subset of variables in the framework of information theory, as recently proposed. Mixing these two improvements we compare the differences between BOLD and deconvolved BOLD level effective networks and draw some conclusions.
EMNLP
2018
http://aclweb.org/anthology/D18-1289
Is this Sentence Difficult? Do you Agree?
Run-on sentences are common grammatical mistakes but little research has tackled this problem to date. This work introduces two machine learning models to correct run-on sentences that outperform leading methods for related tasks, punctuation restoration and whole-sentence grammatical error correction. Due to the limited annotated data for this error, we experiment with artificially generating training data from clean newswire text. Our findings suggest artificial training data is viable for this task. We discuss implications for correcting run-ons and other types of mistakes that have low coverage in error-annotated corpora.
EMNLP
2018
http://aclweb.org/anthology/D18-1290
Neural Transition Based Parsing of Web Queries: An Entity Based Approach
The most approaches to Knowledge Base Question Answering are based on semantic parsing. In this paper, we address the problem of learning vector representations for complex semantic parses that consist of multiple entities and relations. Previous work largely focused on selecting the correct semantic relations for a question and disregarded the structure of the semantic parse: the connections between entities and the directions of the relations. We propose to use Gated Graph Neural Networks to encode the graph structure of the semantic parse. We show on two data sets that the graph networks outperform all baseline models that do not explicitly model the structure. The error analysis confirms that our approach can successfully process complex semantic parses.
EMNLP
2018
http://aclweb.org/anthology/D18-1291
An Investigation of the Interactions Between Pre-Trained Word Embeddings, Character Models and POS Tags in Dependency Parsing
We provide a comprehensive analysis of the interactions between pre-trained word embeddings, character models and POS tags in a transition-based dependency parser. While previous studies have shown POS information to be less important in the presence of character models, we show that in fact there are complex interactions between all three techniques. In isolation each produces large improvements over a baseline system using randomly initialised word embeddings only, but combining them quickly leads to diminishing returns. We categorise words by frequency, POS tag and language in order to systematically investigate how each of the techniques affects parsing quality. For many word categories, applying any two of the three techniques is almost as good as the full combined system. Character models tend to be more important for low-frequency open-class words, especially in morphologically rich languages, while POS tags can help disambiguate high-frequency function words. We also show that large character embedding sizes help even for languages with small character sets, especially in morphologically rich languages.
EMNLP
2018
http://aclweb.org/anthology/D18-1292
Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG induction
There have been several recent attempts to improve the accuracy of grammar induction systems by bounding the recursive complexity of the induction model (Ponvert et al., 2011; Noji and Johnson, 2016; Shain et al., 2016; Jin et al., 2018). Modern depth-bounded grammar inducers have been shown to be more accurate than early unbounded PCFG inducers, but this technique has never been compared against unbounded induction within the same system, in part because most previous depth-bounding models are built around sequence models, the complexity of which grows exponentially with the maximum allowed depth. The present work instead applies depth bounds within a chart-based Bayesian PCFG inducer (Johnson et al., 2007b), where bounding can be switched on and off, and then samples trees with and without bounding. Results show that depth-bounding is indeed significantly effective in limiting the search space of the inducer and thereby increasing the accuracy of the resulting parsing model. Moreover, parsing results on English, Chinese and German show that this bounded model with a new inference technique is able to produce parse trees more accurately than or competitively with state-of-the-art constituency-based grammar induction models.
EMNLP
2018
http://aclweb.org/anthology/D18-1293
Incremental Computation of Infix Probabilities for Probabilistic Finite Automata
Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.
EMNLP
2018
http://aclweb.org/anthology/D18-1294
Syntax Encoding with Application in Authorship Attribution
There are many occasions in which the security community is interested to discover the authorship of malware binaries, either for digital forensics analysis of malware corpora or for thwarting live threats of malware invasion. Such a discovery of authorship might be possible due to stylistic features inherent to software codes written by human programmers. Existing studies of authorship attribution of general purpose software mainly focus on source code, which is typically based on the style of programs and environment. However, those features critically depend on the availability of the program source code, which is usually not the case when dealing with malware binaries. Such program binaries often do not retain many semantic or stylistic features due to the compilation process. Therefore, authorship attribution in the domain of malware binaries based on features and styles that will survive the compilation process is challenging. This paper provides the state of the art in this literature. Further, we analyze the features involved in those techniques. By using a case study, we identify features that can survive the compilation process. Finally, we analyze existing works on binary authorship attribution and study their applicability to real malware binaries.
EMNLP
2018
http://aclweb.org/anthology/D18-1295
Sanskrit Word Segmentation Using Character-level Recurrent and Convolutional Neural Networks
Semantic segmentation has recently witnessed major progress, where fully convolutional neural networks have shown to perform well. However, most of the previous work focused on improving single image segmentation. To our knowledge, no prior work has made use of temporal video information in a recurrent network. In this paper, we introduce a novel approach to implicitly utilize temporal data in videos for online semantic segmentation. The method relies on a fully convolutional network that is embedded into a gated recurrent architecture. This design receives a sequence of consecutive video frames and outputs the segmentation of the last frame. Convolutional gated recurrent networks are used for the recurrent part to preserve spatial connectivities in the image. Our proposed method can be applied in both online and batch segmentation. This architecture is tested for both binary and semantic video segmentation tasks. Experiments are conducted on the recent benchmarks in SegTrack V2, Davis, CityScapes, and Synthia. Using recurrent fully convolutional networks improved the baseline network performance in all of our experiments. Namely, 5% and 3% improvement of F-measure in SegTrack2 and Davis respectively, 5.7% improvement in mean IoU in Synthia and 3.5% improvement in categorical mean IoU in CityScapes. The performance of the RFCN network depends on its baseline fully convolutional network. Thus RFCN architecture can be seen as a method to improve its baseline segmentation network by exploiting spatiotemporal information in videos.
EMNLP
2018
http://aclweb.org/anthology/D18-1296
Session-level Language Modeling for Conversational Speech
For conversational large-vocabulary continuous speech recognition (LVCSR) tasks, up to about two thousand hours of audio is commonly used to train state of the art models. Collection of labeled conversational audio however, is prohibitively expensive, laborious and error-prone. Furthermore, academic corpora like Fisher English (2004) or Switchboard (1992) are inadequate to train models with sufficient accuracy in the unbounded space of conversational speech. These corpora are also timeworn due to dated acoustic telephony features and the rapid advancement of colloquial vocabulary and idiomatic speech over the last decades. Utilizing the colossal scale of our unlabeled telephony dataset, we propose a technique to construct a modern, high quality conversational speech training corpus on the order of hundreds of millions of utterances (or tens of thousands of hours) for both acoustic and language model training. We describe the data collection, selection and training, evaluating the results of our updated speech recognition system on a test corpus of 7K manually transcribed utterances. We show relative word error rate (WER) reductions of {35%, 19%} on {agent, caller} utterances over our seed model and 5% absolute WER improvements over IBM Watson STT on this conversational speech task.
EMNLP
2018
http://aclweb.org/anthology/D18-1297
Towards Less Generic Responses in Neural Conversation Models: A Statistical Re-weighting Method
Dialog response selection is an important step towards natural response generation in conversational agents. Existing work on neural conversational models mainly focuses on offline supervised learning using a large set of context-response pairs. In this paper, we focus on online learning of response selection in retrieval-based dialog systems. We propose a contextual multi-armed bandit model with a nonlinear reward function that uses distributed representation of text for online response selection. A bidirectional LSTM is used to produce the distributed representations of dialog context and responses, which serve as the input to a contextual bandit. In learning the bandit, we propose a customized Thompson sampling method that is applied to a polynomial feature space in approximating the reward. Experimental results on the Ubuntu Dialogue Corpus demonstrate significant performance gains of the proposed method over conventional linear contextual bandits. Moreover, we report encouraging response selection performance of the proposed neural bandit model using the Recall@k metric for a small set of online training samples.
EMNLP
2018
http://aclweb.org/anthology/D18-1298
Training Millions of Personalized Dialogue Agents
Current dialogue systems are not very engaging for users, especially when trained end-to-end without relying on proactive reengaging scripted strategies. Zhang et al. (2018) showed that the engagement level of end-to-end dialogue models increases when conditioning them on text personas providing some personalized back-story to the model. However, the dataset used in Zhang et al. (2018) is synthetic and of limited size as it contains around 1k different personas. In this paper we introduce a new dataset providing 5 million personas and 700 million persona-based dialogues. Our experiments show that, at this scale, training using personas still improves the performance of end-to-end systems. In addition, we show that other tasks benefit from the wide coverage of our dataset by fine-tuning our model on the data from Zhang et al. (2018) and achieving state-of-the-art results.
EMNLP
2018
http://aclweb.org/anthology/D18-1299
Towards Universal Dialogue State Tracking
Dialogue state tracking is the core part of a spoken dialogue system. It estimates the beliefs of possible user's goals at every dialogue turn. However, for most current approaches, it's difficult to scale to large dialogue domains. They have one or more of following limitations: (a) Some models don't work in the situation where slot values in ontology changes dynamically; (b) The number of model parameters is proportional to the number of slots; (c) Some models extract features based on hand-crafted lexicons. To tackle these challenges, we propose StateNet, a universal dialogue state tracker. It is independent of the number of values, shares parameters across all slots, and uses pre-trained word vectors instead of explicit semantic dictionaries. Our experiments on two datasets show that our approach not only overcomes the limitations, but also significantly outperforms the performance of state-of-the-art approaches.
EMNLP
2018
http://aclweb.org/anthology/D18-1300
Semantic Parsing for Task Oriented Dialog using Hierarchical Representations
Task oriented dialog systems typically first parse user utterances to semantic frames comprised of intents and slots. Previous work on task oriented intent and slot-filling work has been restricted to one intent per query and one slot label per token, and thus cannot model complex compositional requests. Alternative semantic parsing systems have represented queries as logical forms, but these are challenging to annotate and parse. We propose a hierarchical annotation scheme for semantic parsing that allows the representation of compositional queries, and can be efficiently and accurately parsed by standard constituency parsing models. We release a dataset of 44k annotated queries (fb.me/semanticparsingdialog), and show that parsing models outperform sequence-to-sequence approaches on this dataset.
EMNLP
2018
http://aclweb.org/anthology/D18-1301
The glass ceiling in NLP
Liquids relax extremely slowly upon approaching the glass state. One explanation is that an entropy crisis, due to the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally-relevant timescales. In this work we not only close the colossal gap between experiments and simulations but manage to create in-silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the new observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.
EMNLP
2018
http://aclweb.org/anthology/D18-1302
Reducing Gender Bias in Abusive Language Detection
Abusive language detection models tend to have a problem of being biased toward identity words of a certain group of people because of imbalanced training datasets. For example, "You are a good woman" was considered "sexist" when trained on an existing dataset. Such model bias is an obstacle for models to be robust enough for practical use. In this work, we measure gender biases on models trained with different abusive language datasets, while analyzing the effect of different pre-trained word embeddings and model architectures. We also experiment with three bias mitigation methods: (1) debiased word embeddings, (2) gender swap data augmentation, and (3) fine-tuning with a larger corpus. These methods can effectively reduce gender bias by 90-98% and can be extended to correct model bias in other scenarios.
EMNLP
2018
http://aclweb.org/anthology/D18-1303
SafeCity: Understanding Diverse Forms of Sexual Harassment Personal Stories
With the recent rise of #MeToo, an increasing number of personal stories about sexual harassment and sexual abuse have been shared online. In order to push forward the fight against such harassment and abuse, we present the task of automatically categorizing and analyzing various forms of sexual harassment, based on stories shared on the online forum SafeCity. For the labels of groping, ogling, and commenting, our single-label CNN-RNN model achieves an accuracy of 86.5%, and our multi-label model achieves a Hamming score of 82.5%. Furthermore, we present analysis using LIME, first-derivative saliency heatmaps, activation clustering, and embedding visualization to interpret neural model predictions and demonstrate how this extracts features that can help automatically fill out incident reports, identify unsafe areas, avoid unsafe practices, and 'pin the creeps'.
EMNLP
2018
http://aclweb.org/anthology/D18-1304
Learning multiview embeddings for assessing dementia
Interactive cognitive assessment tools may be valuable for doctors and therapists to reduce costs and improve quality in healthcare systems. Use cases and scenarios include the assessment of dementia. In this paper, we present our approach to the semi-automatic assessment of dementia. We describe a case study with digital pens for the patients including background, problem description and possible solutions. We conclude with lessons learned when implementing digital tests, and a generalisation for use outside the cognitive impairments field.
EMNLP
2018
http://aclweb.org/anthology/D18-1305
WikiConv: A Corpus of the Complete Conversational History of a Large Online Collaborative Community
We present a corpus that encompasses the complete history of conversations between contributors to Wikipedia, one of the largest online collaborative communities. By recording the intermediate states of conversations---including not only comments and replies, but also their modifications, deletions and restorations---this data offers an unprecedented view of online conversation. This level of detail supports new research questions pertaining to the process (and challenges) of large-scale online collaboration. We illustrate the corpus' potential with two case studies that highlight new perspectives on earlier work. First, we explore how a person's conversational behavior depends on how they relate to the discussion's venue. Second, we show that community moderation of toxic behavior happens at a higher rate than previously estimated. Finally the reconstruction framework is designed to be language agnostic, and we show that it can extract high quality conversational data in both Chinese and English.
EMNLP
2018
http://aclweb.org/anthology/D18-1306
Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recognition from Disjoint Label Sets
Named entity recognition often fails in idiosyncratic domains. That causes a problem for depending tasks, such as entity linking and relation extraction. We propose a generic and robust approach for high-recall named entity recognition. Our approach is easy to train and offers strong generalization over diverse domain-specific language, such as news documents (e.g. Reuters) or biomedical text (e.g. Medline). Our approach is based on deep contextual sequence learning and utilizes stacked bidirectional LSTM networks. Our model is trained with only few hundred labeled sentences and does not rely on further external knowledge. We report from our results F1 scores in the range of 84-94% on standard datasets.
EMNLP
2018
http://aclweb.org/anthology/D18-1307
Adversarial training for multi-context joint entity and relation extraction
Adversarial training (AT) is a regularization method that can be used to improve the robustness of neural network methods by adding small perturbations in the training data. We show how to use AT for the tasks of entity recognition and relation extraction. In particular, we demonstrate that applying AT to a general purpose baseline model for jointly extracting entities and relations, allows improving the state-of-the-art effectiveness on several datasets in different contexts (i.e., news, biomedical, and real estate data) and for different languages (English and Dutch).
EMNLP
2018
http://aclweb.org/anthology/D18-1308
Structured Multi-Label Biomedical Text Tagging via Attentive Neural Tree Decoding
We propose a model for tagging unstructured texts with an arbitrary number of terms drawn from a tree-structured vocabulary (i.e., an ontology). We treat this as a special case of sequence-to-sequence learning in which the decoder begins at the root node of an ontological tree and recursively elects to expand child nodes as a function of the input text, the current node, and the latent decoder state. In our experiments the proposed method outperforms state-of-the-art approaches on the important task of automatically assigning MeSH terms to biomedical abstracts.
EMNLP
2018
http://aclweb.org/anthology/D18-1309
Deep Exhaustive Model for Nested Named Entity Recognition
In this report, we describe our participant named-entity recognition system at VLSP 2018 evaluation campaign. We formalized the task as a sequence labeling problem using BIO encoding scheme. We applied a feature-based model which combines word, word-shape features, Brown-cluster-based features, and word-embedding-based features. We compare several methods to deal with nested entities in the dataset. We showed that combining tags of entities at all levels for training a sequence labeling model (joint-tag model) improved the accuracy of nested named-entity recognition.
EMNLP
2018
http://aclweb.org/anthology/D18-1310
Evaluating the Utility of Hand-crafted Features in Sequence Labelling
In this paper we propose and carefully evaluate a sequence labeling framework which solely utilizes sparse indicator features derived from dense distributed word representations. The proposed model obtains (near) state-of-the art performance for both part-of-speech tagging and named entity recognition for a variety of languages. Our model relies only on a few thousand sparse coding-derived features, without applying any modification of the word representations employed for the different tasks. The proposed model has favorable generalization properties as it retains over 89.8% of its average POS tagging accuracy when trained at 1.2% of the total available training data, i.e.~150 sentences per language.
EMNLP
2018
http://aclweb.org/anthology/D18-1311
Improved Dependency Parsing using Implicit Word Connections Learned from Unlabeled Data
We consider the supervised training setting in which we learn task-specific word embeddings. We assume that we start with initial embeddings learned from unlabelled data and update them to learn task-specific embeddings for words in the supervised training data. However, for new words in the test set, we must use either their initial embeddings or a single unknown embedding, which often leads to errors. We address this by learning a neural network to map from initial embeddings to the task-specific embedding space, via a multi-loss objective function. The technique is general, but here we demonstrate its use for improved dependency parsing (especially for sentences with out-of-vocabulary words), as well as for downstream improvements on sentiment analysis.
EMNLP
2018
http://aclweb.org/anthology/D18-1312
A Framework for Understanding the Role of Morphology in Universal Dependency Parsing
This paper presents a semantic parsing approach for unrestricted texts. Semantic parsing is one of the major bottlenecks of Natural Language Understanding (NLU) systems and usually requires building expensive resources not easily portable to other domains. Our approach obtains a case-role analysis, in which the semantic roles of the verb are identified. In order to cover all the possible syntactic realisations of a verb, our system combines their argument structure with a set of general semantic labelled diatheses models. Combining them, the system builds a set of syntactic-semantic patterns with their own role-case representation. Once the patterns are build, we use an approximate tree pattern-matching algorithm to identify the most reliable pattern for a sentence. The pattern matching is performed between the syntactic-semantic patterns and the feature-structure tree representing the morphological, syntactical and semantic information of the analysed sentence. For sentences assigned to the correct model, the semantic parsing system we are presenting identifies correctly more than 73% of possible semantic case-roles.
EMNLP
2018
http://aclweb.org/anthology/D18-1313
The Lazy Encoder: A Fine-Grained Analysis of the Role of Morphology in Neural Machine Translation
The advent of the attention mechanism in neural machine translation models has improved the performance of machine translation systems by enabling selective lookup into the source sentence. In this paper, the efficiencies of translation using bidirectional encoder attention decoder models were studied with respect to translation involving morphologically rich languages. The English - Tamil language pair was selected for this analysis. First, the use of Word2Vec embedding for both the English and Tamil words improved the translation results by 0.73 BLEU points over the baseline RNNSearch model with 4.84 BLEU score. The use of morphological segmentation before word vectorization to split the morphologically rich Tamil words into their respective morphemes before the translation, caused a reduction in the target vocabulary size by a factor of 8. Also, this model (RNNMorph) improved the performance of neural machine translation by 7.05 BLEU points over the RNNSearch model used over the same corpus. Since the BLEU evaluation of the RNNMorph model might be unreliable due to an increase in the number of matching tokens per sentence, the performances of the translations were also compared by means of human evaluation metrics of adequacy, fluency and relative ranking. Further, the use of morphological segmentation also improved the efficacy of the attention mechanism.
EMNLP
2018
http://aclweb.org/anthology/D18-1314
Imitation Learning for Neural Morphological String Transduction
We employ imitation learning to train a neural transition-based string transducer for morphological tasks such as inflection generation and lemmatization. Previous approaches to training this type of model either rely on an external character aligner for the production of gold action sequences, which results in a suboptimal model due to the unwarranted dependence on a single gold action sequence despite spurious ambiguity, or require warm starting with an MLE model. Our approach only requires a simple expert policy, eliminating the need for a character aligner or warm start. It also addresses familiar MLE training biases and leads to strong and state-of-the-art performance on several benchmarks.
EMNLP
2018
http://aclweb.org/anthology/D18-1315
An Encoder-Decoder Approach to the Paradigm Cell Filling Problem
Current efforts in the biomedical sciences and related interdisciplinary fields are focused on gaining a molecular understanding of health and disease, which is a problem of daunting complexity that spans many orders of magnitude in characteristic length scales, from small molecules that regulate cell function to cell ensembles that form tissues and organs working together as an organism. In order to uncover the molecular nature of the emergent properties of a cell, it is essential to measure multiple cell components simultaneously in the same cell. In turn, cell heterogeneity requires multiple cells to be measured in order to understand health and disease in the organism. This review summarizes current efforts towards a data-driven framework that leverages single-cell technologies to build robust signatures of healthy and diseased phenotypes. While some approaches focus on multicolor flow cytometry data and other methods are designed to analyze high-content image-based screens, we emphasize the so-called Supercell/SVM paradigm (recently developed by the authors of this review and collaborators) as a unified framework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond their specific contributions to basic and translational biomedical research, these efforts illustrate, from a larger perspective, the powerful synergy that might be achieved from bringing together methods and ideas from statistical physics, data mining, and mathematics to solve the most pressing problems currently facing the life sciences.
EMNLP
2018
http://aclweb.org/anthology/D18-1316
Generating Natural Language Adversarial Examples
Adversarial examples are inputs to machine learning models designed to cause the model to make a mistake. They are useful for understanding the shortcomings of machine learning models, interpreting their results, and for regularisation. In NLP, however, most example generation strategies produce input text by using known, pre-specified semantic transformations, requiring significant manual effort and in-depth understanding of the problem and domain. In this paper, we investigate the problem of automatically generating adversarial examples that violate a set of given First-Order Logic constraints in Natural Language Inference (NLI). We reduce the problem of identifying such adversarial examples to a combinatorial optimisation problem, by maximising a quantity measuring the degree of violation of such constraints and by using a language model for generating linguistically-plausible examples. Furthermore, we propose a method for adversarially regularising neural NLI models for incorporating background knowledge. Our results show that, while the proposed method does not always improve results on the SNLI and MultiNLI datasets, it significantly and consistently increases the predictive accuracy on adversarially-crafted datasets -- up to a 79.6% relative improvement -- while drastically reducing the number of background knowledge violations. Furthermore, we show that adversarial examples transfer among model architectures, and that the proposed adversarial training procedure improves the robustness of NLI models to adversarial examples.
EMNLP
2018
http://aclweb.org/anthology/D18-1317
Multi-Head Attention with Disagreement Regularization
Multi-head attention is appealing for the ability to jointly attend to information from different representation subspaces at different positions. In this work, we introduce a disagreement regularization to explicitly encourage the diversity among multiple attention heads. Specifically, we propose three types of disagreement regularization, which respectively encourage the subspace, the attended positions, and the output representation associated with each attention head to be different from other heads. Experimental results on widely-used WMT14 English-German and WMT17 Chinese-English translation tasks demonstrate the effectiveness and universality of the proposed approach.
EMNLP
2018
http://aclweb.org/anthology/D18-1318
Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study
Several recent papers investigate Active Learning (AL) for mitigating the data dependence of deep learning for natural language processing. However, the applicability of AL to real-world problems remains an open question. While in supervised learning, practitioners can try many different methods, evaluating each against a validation set before selecting a model, AL affords no such luxury. Over the course of one AL run, an agent annotates its dataset exhausting its labeling budget. Thus, given a new task, an active learner has no opportunity to compare models and acquisition functions. This paper provides a large scale empirical study of deep active learning, addressing multiple tasks and, for each, multiple datasets, multiple models, and a full suite of acquisition functions. We find that across all settings, Bayesian active learning by disagreement, using uncertainty estimates provided either by Dropout or Bayes-by Backprop significantly improves over i.i.d. baselines and usually outperforms classic uncertainty sampling.
EMNLP
2018
http://aclweb.org/anthology/D18-1319
Bayesian Compression for Natural Language Processing
In natural language processing, a lot of the tasks are successfully solved with recurrent neural networks, but such models have a huge number of parameters. The majority of these parameters are often concentrated in the embedding layer, which size grows proportionally to the vocabulary length. We propose a Bayesian sparsification technique for RNNs which allows compressing the RNN dozens or hundreds of times without time-consuming hyperparameters tuning. We also generalize the model for vocabulary sparsification to filter out unnecessary words and compress the RNN even further. We show that the choice of the kept words is interpretable.
EMNLP
2018
http://aclweb.org/anthology/D18-1320
Multimodal neural pronunciation modeling for spoken languages with logographic origin
Graphemes of most languages encode pronunciation, though some are more explicit than others. Languages like Spanish have a straightforward mapping between its graphemes and phonemes, while this mapping is more convoluted for languages like English. Spoken languages such as Cantonese present even more challenges in pronunciation modeling: (1) they do not have a standard written form, (2) the closest graphemic origins are logographic Han characters, of which only a subset of these logographic characters implicitly encodes pronunciation. In this work, we propose a multimodal approach to predict the pronunciation of Cantonese logographic characters, using neural networks with a geometric representation of logographs and pronunciation of cognates in historically related languages. The proposed framework improves performance by 18.1% and 25.0% respective to unimodal and multimodal baselines.
EMNLP
2018
http://aclweb.org/anthology/D18-1321
Chinese Pinyin Aided IME, Input What You Have Not Keystroked Yet
Chinese pinyin input method engine (IME) converts pinyin into character so that Chinese characters can be conveniently inputted into computer through common keyboard. IMEs work relying on its core component, pinyin-to-character conversion (P2C). Usually Chinese IMEs simply predict a list of character sequences for user choice only according to user pinyin input at each turn. However, Chinese inputting is a multi-turn online procedure, which can be supposed to be exploited for further user experience promoting. This paper thus for the first time introduces a sequence-to-sequence model with gated-attention mechanism for the core task in IMEs. The proposed neural P2C model is learned by encoding previous input utterance as extra context to enable our IME capable of predicting character sequence with incomplete pinyin input. Our model is evaluated in different benchmark datasets showing great user experience improvement compared to traditional models, which demonstrates the first engineering practice of building Chinese aided IME.
EMNLP
2018
http://aclweb.org/anthology/D18-1322
Estimating Marginal Probabilities of n-grams for Recurrent Neural Language Models
In this paper, we investigate the use of prediction-adaptation-correction recurrent neural networks (PAC-RNNs) for low-resource speech recognition. A PAC-RNN is comprised of a pair of neural networks in which a {\it correction} network uses auxiliary information given by a {\it prediction} network to help estimate the state probability. The information from the correction network is also used by the prediction network in a recurrent loop. Our model outperforms other state-of-the-art neural networks (DNNs, LSTMs) on IARPA-Babel tasks. Moreover, transfer learning from a language that is similar to the target language can help improve performance further.
EMNLP
2018
http://aclweb.org/anthology/D18-1323
How to represent a word and predict it, too: Improving tied architectures for language modelling
With a simple architecture and the ability to learn meaningful word embeddings efficiently from texts containing billions of words, word2vec remains one of the most popular neural language models used today. However, as only a single embedding is learned for every word in the vocabulary, the model fails to optimally represent words with multiple meanings. Additionally, it is not possible to create embeddings for new (out-of-vocabulary) words on the spot. Based on an intuitive interpretation of the continuous bag-of-words (CBOW) word2vec model's negative sampling training objective in terms of predicting context based similarities, we motivate an extension of the model we call context encoders (ConEc). By multiplying the matrix of trained word2vec embeddings with a word's average context vector, out-of-vocabulary (OOV) embeddings and representations for a word with multiple meanings can be created based on the word's local contexts. The benefits of this approach are illustrated by using these word embeddings as features in the CoNLL 2003 named entity recognition (NER) task.
EMNLP
2018
http://aclweb.org/anthology/D18-1324
The Importance of Generation Order in Language Modeling
Language segmentation consists in finding the boundaries where one language ends and another language begins in a text written in more than one language. This is important for all natural language processing tasks. The problem can be solved by training language models on language data. However, in the case of low- or no-resource languages, this is problematic. I therefore investigate whether unsupervised methods perform better than supervised methods when it is difficult or impossible to train supervised approaches. A special focus is given to difficult texts, i.e. texts that are rather short (one sentence), containing abbreviations, low-resource languages and non-standard language. I compare three approaches: supervised n-gram language models, unsupervised clustering and weakly supervised n-gram language model induction. I devised the weakly supervised approach in order to deal with difficult text specifically. In order to test the approach, I compiled a small corpus of different text types, ranging from one-sentence texts to texts of about 300 words. The weakly supervised language model induction approach works well on short and difficult texts, outperforming the clustering algorithm and reaching scores in the vicinity of the supervised approach. The results look promising, but there is room for improvement and a more thorough investigation should be undertaken.
EMNLP
2018
http://aclweb.org/anthology/D18-1325
Document-Level Neural Machine Translation with Hierarchical Attention Networks
Neural Machine Translation (NMT) can be improved by including document-level contextual information. For this purpose, we propose a hierarchical attention model to capture the context in a structured and dynamic manner. The model is integrated in the original NMT architecture as another level of abstraction, conditioning on the NMT model's own previous hidden states. Experiments show that hierarchical attention significantly improves the BLEU score over a strong NMT baseline with the state-of-the-art in context-aware methods, and that both the encoder and decoder benefit from context in complementary ways.
EMNLP
2018
http://aclweb.org/anthology/D18-1326
Three Strategies to Improve One-to-Many Multilingual Translation
Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enabled one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
EMNLP
2018
http://aclweb.org/anthology/D18-1327
Multi-Source Syntactic Neural Machine Translation
Incorporating syntactic information in Neural Machine Translation models is a method to compensate their requirement for a large amount of parallel training text, especially for low-resource language pairs. Previous works on using syntactic information provided by (inevitably error-prone) parsers has been promising. In this paper, we propose a forest-to-sequence Attentional Neural Machine Translation model to make use of exponentially many parse trees of the source sentence to compensate for the parser errors. Our method represents the collection of parse trees as a packed forest, and learns a neural attentional transduction model from the forest to the target sentence. Experiments on English to German, Chinese and Persian translation show the superiority of our method over the tree-to-sequence and vanilla sequence-to-sequence neural translation models.
EMNLP
2018
http://aclweb.org/anthology/D18-1328
Fixing Translation Divergences in Parallel Corpora for Neural MT
Although there are increasing and significant ties between China and Portuguese-speaking countries, there is not much parallel corpora in the Chinese-Portuguese language pair. Both languages are very populous, with 1.2 billion native Chinese speakers and 279 million native Portuguese speakers, the language pair, however, could be considered as low-resource in terms of available parallel corpora. In this paper, we describe our methods to curate Chinese-Portuguese parallel corpora and evaluate their quality. We extracted bilingual data from Macao government websites and proposed a hierarchical strategy to build a large parallel corpus. Experiments are conducted on existing and our corpora using both Phrased-Based Machine Translation (PBMT) and the state-of-the-art Neural Machine Translation (NMT) models. The results of this work can be used as a benchmark for future Chinese-Portuguese MT systems. The approach we used in this paper also shows a good example on how to boost performance of MT systems for low-resource language pairs.
EMNLP
2018
http://aclweb.org/anthology/D18-1329
Adversarial Evaluation of Multimodal Machine Translation
Continuous multimodal representations suitable for multimodal information retrieval are usually obtained with methods that heavily rely on multimodal autoencoders. In video hyperlinking, a task that aims at retrieving video segments, the state of the art is a variation of two interlocked networks working in opposing directions. These systems provide good multimodal embeddings and are also capable of translating from one representation space to the other. Operating on representation spaces, these networks lack the ability to operate in the original spaces (text or image), which makes it difficult to visualize the crossmodal function, and do not generalize well to unseen data. Recently, generative adversarial networks have gained popularity and have been used for generating realistic synthetic data and for obtaining high-level, single-modal latent representation spaces. In this work, we evaluate the feasibility of using GANs to obtain multimodal representations. We show that GANs can be used for multimodal representation learning and that they provide multimodal representations that are superior to representations obtained with multimodal autoencoders. Additionally, we illustrate the ability of visualizing crossmodal translations that can provide human-interpretable insights on learned GAN-based video hyperlinking models.
EMNLP
2018
http://aclweb.org/anthology/D18-1330
Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion
Continuous word representations learned separately on distinct languages can be aligned so that their words become comparable in a common space. Existing works typically solve a least-square regression problem to learn a rotation aligning a small bilingual lexicon, and use a retrieval criterion for inference. In this paper, we propose an unified formulation that directly optimizes a retrieval criterion in an end-to-end fashion. Our experiments on standard benchmarks show that our approach outperforms the state of the art on word translation, with the biggest improvements observed for distant language pairs such as English-Chinese.
EMNLP
2018
http://aclweb.org/anthology/D18-1331
Learning When to Concentrate or Divert Attention: Self-Adaptive Attention Temperature for Neural Machine Translation
Most of the Neural Machine Translation (NMT) models are based on the sequence-to-sequence (Seq2Seq) model with an encoder-decoder framework equipped with the attention mechanism. However, the conventional attention mechanism treats the decoding at each time step equally with the same matrix, which is problematic since the softness of the attention for different types of words (e.g. content words and function words) should differ. Therefore, we propose a new model with a mechanism called Self-Adaptive Control of Temperature (SACT) to control the softness of attention by means of an attention temperature. Experimental results on the Chinese-English translation and English-Vietnamese translation demonstrate that our model outperforms the baseline models, and the analysis and the case study show that our model can attend to the most relevant elements in the source-side contexts and generate the translation of high quality.
EMNLP
2018
http://aclweb.org/anthology/D18-1332
Accelerating Asynchronous Stochastic Gradient Descent for Neural Machine Translation
In order to extract the best possible performance from asynchronous stochastic gradient descent one must increase the mini-batch size and scale the learning rate accordingly. In order to achieve further speedup we introduce a technique that delays gradient updates effectively increasing the mini-batch size. Unfortunately with the increase of mini-batch size we worsen the stale gradient problem in asynchronous stochastic gradient descent (SGD) which makes the model convergence poor. We introduce local optimizers which mitigate the stale gradient problem and together with fine tuning our momentum we are able to train a shallow machine translation system 27% faster than an optimized baseline with negligible penalty in BLEU.
EMNLP
2018
http://aclweb.org/anthology/D18-1333
Learning to Jointly Translate and Predict Dropped Pronouns with a Shared Reconstruction Mechanism
Pronouns are frequently omitted in pro-drop languages, such as Chinese, generally leading to significant challenges with respect to the production of complete translations. Recently, Wang et al. (2018) proposed a novel reconstruction-based approach to alleviating dropped pronoun (DP) translation problems for neural machine translation models. In this work, we improve the original model from two perspectives. First, we employ a shared reconstructor to better exploit encoder and decoder representations. Second, we jointly learn to translate and predict DPs in an end-to-end manner, to avoid the errors propagated from an external DP prediction model. Experimental results show that our approach significantly improves both translation performance and DP prediction accuracy.
EMNLP
2018
http://aclweb.org/anthology/D18-1334
Getting Gender Right in Neural Machine Translation
Spoken Language Translation (SLT) is becoming more widely used and becoming a communication tool that helps in crossing language barriers. One of the challenges of SLT is the translation from a language without gender agreement to a language with gender agreement such as English to Arabic. In this paper, we introduce an approach to tackle such limitation by enabling a Neural Machine Translation system to produce gender-aware translation. We show that NMT system can model the speaker/listener gender information to produce gender-aware translation. We propose a method to generate data used in adapting a NMT system to produce gender-aware. The proposed approach can achieve significant improvement of the translation quality by 2 BLEU points.
EMNLP
2018
http://aclweb.org/anthology/D18-1335
Towards Two-Dimensional Sequence to Sequence Model in Neural Machine Translation
Draft of textbook chapter on neural machine translation. a comprehensive treatment of the topic, ranging from introduction to neural networks, computation graphs, description of the currently dominant attentional sequence-to-sequence model, recent refinements, alternative architectures and challenges. Written as chapter for the textbook Statistical Machine Translation. Used in the JHU Fall 2017 class on machine translation.
EMNLP
2018
http://aclweb.org/anthology/D18-1336
End-to-End Non-Autoregressive Neural Machine Translation with Connectionist Temporal Classification
Autoregressive decoding is the only part of sequence-to-sequence models that prevents them from massive parallelization at inference time. Non-autoregressive models enable the decoder to generate all output symbols independently in parallel. We present a novel non-autoregressive architecture based on connectionist temporal classification and evaluate it on the task of neural machine translation. Unlike other non-autoregressive methods which operate in several steps, our model can be trained end-to-end. We conduct experiments on the WMT English-Romanian and English-German datasets. Our models achieve a significant speedup over the autoregressive models, keeping the translation quality comparable to other non-autoregressive models.
EMNLP
2018
http://aclweb.org/anthology/D18-1337
Prediction Improves Simultaneous Neural Machine Translation
We investigate the potential of attention-based neural machine translation in simultaneous translation. We introduce a novel decoding algorithm, called simultaneous greedy decoding, that allows an existing neural machine translation model to begin translating before a full source sentence is received. This approach is unique from previous works on simultaneous translation in that segmentation and translation are done jointly to maximize the translation quality and that translating each segment is strongly conditioned on all the previous segments. This paper presents a first step toward building a full simultaneous translation system based on neural machine translation.
EMNLP
2018
http://aclweb.org/anthology/D18-1338
Training Deeper Neural Machine Translation Models with Transparent Attention
While current state-of-the-art NMT models, such as RNN seq2seq and Transformers, possess a large number of parameters, they are still shallow in comparison to convolutional models used for both text and vision applications. In this work we attempt to train significantly (2-3x) deeper Transformer and Bi-RNN encoders for machine translation. We propose a simple modification to the attention mechanism that eases the optimization of deeper models, and results in consistent gains of 0.7-1.1 BLEU on the benchmark WMT'14 English-German and WMT'15 Czech-English tasks for both architectures.
EMNLP
2018
http://aclweb.org/anthology/D18-1339
Context and Copying in Neural Machine Translation
We examine how various types of noise in the parallel training data impact the quality of neural machine translation systems. We create five types of artificial noise and analyze how they degrade performance in neural and statistical machine translation. We find that neural models are generally more harmed by noise than statistical models. For one especially egregious type of noise they learn to just copy the input sentence.
EMNLP
2018
http://aclweb.org/anthology/D18-1340
Encoding Gated Translation Memory into Neural Machine Translation
Neural machine translation (NMT) systems are usually trained on a large amount of bilingual sentence pairs and translate one sentence at a time, ignoring inter-sentence information. This may make the translation of a sentence ambiguous or even inconsistent with the translations of neighboring sentences. In order to handle this issue, we propose an inter-sentence gate model that uses the same encoder to encode two adjacent sentences and controls the amount of information flowing from the preceding sentence to the translation of the current sentence with an inter-sentence gate. In this way, our proposed model can capture the connection between sentences and fuse recency from neighboring sentences into neural machine translation. On several NIST Chinese-English translation tasks, our experiments demonstrate that the proposed inter-sentence gate model achieves substantial improvements over the baseline.
EMNLP
2018
http://aclweb.org/anthology/D18-1341
Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach
Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.
EMNLP
2018
http://aclweb.org/anthology/D18-1342
Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping Criteria for Neural Machine Translation
Beam search is widely used in neural machine translation, and usually improves translation quality compared to greedy search. It has been widely observed that, however, beam sizes larger than 5 hurt translation quality. We explain why this happens, and propose several methods to address this problem. Furthermore, we discuss the optimal stopping criteria for these methods. Results show that our hyperparameter-free methods outperform the widely-used hyperparameter-free heuristic of length normalization by +2.0 BLEU, and achieve the best results among all methods on Chinese-to-English translation.
EMNLP
2018
http://aclweb.org/anthology/D18-1343
Multi-Multi-View Learning: Multilingual and Multi-Representation Entity Typing
Entity-Relationship (E-R) Search is a complex case of Entity Search where the goal is to search for multiple unknown entities and relationships connecting them. We assume that a E-R query can be decomposed as a sequence of sub-queries each containing keywords related to a specific entity or relationship. We adopt a probabilistic formulation of the E-R search problem. When creating specific representations for entities (e.g. context terms) and for pairs of entities (i.e. relationships) it is possible to create a graph of probabilistic dependencies between sub-queries and entity plus relationship representations. To the best of our knowledge this represents the first probabilistic model of E-R search. We propose and develop a novel supervised Early Fusion-based model for E-R search, the Entity-Relationship Dependence Model (ERDM). It uses Markov Random Field to model term dependencies of E-R sub-queries and entity/relationship documents. We performed experiments with more than 800M entities and relationships extractions from ClueWeb-09-B with FACC1 entity linking. We obtained promising results using 3 different query collections comprising 469 E-R queries, with results showing that it is possible to perform E-R search without using fix and pre-defined entity and relationship types, enabling a wide range of queries to be addressed.
EMNLP
2018
http://aclweb.org/anthology/D18-1344
Word Embeddings for Code-Mixed Language Processing
Continuous word representation (aka word embedding) is a basic building block in many neural network-based models used in natural language processing tasks. Although it is widely accepted that words with similar semantics should be close to each other in the embedding space, we find that word embeddings learned in several tasks are biased towards word frequency: the embeddings of high-frequency and low-frequency words lie in different subregions of the embedding space, and the embedding of a rare word and a popular word can be far from each other even if they are semantically similar. This makes learned word embeddings ineffective, especially for rare words, and consequently limits the performance of these neural network models. In this paper, we develop a neat, simple yet effective way to learn \emph{FRequency-AGnostic word Embedding} (FRAGE) using adversarial training. We conducted comprehensive studies on ten datasets across four natural language processing tasks, including word similarity, language modeling, machine translation and text classification. Results show that with FRAGE, we achieve higher performance than the baselines in all tasks.
EMNLP
2018
http://aclweb.org/anthology/D18-1345
On the Strength of Character Language Models for Multilingual Named Entity Recognition
Character-level patterns have been widely used as features in English Named Entity Recognition (NER) systems. However, to date there has been no direct investigation of the inherent differences between name and non-name tokens in text, nor whether this property holds across multiple languages. This paper analyzes the capabilities of corpus-agnostic Character-level Language Models (CLMs) in the binary task of distinguishing name tokens from non-name tokens. We demonstrate that CLMs provide a simple and powerful model for capturing these differences, identifying named entity tokens in a diverse set of languages at close to the performance of full NER systems. Moreover, by adding very simple CLM-based features we can significantly improve the performance of an off-the-shelf NER system for multiple languages.
EMNLP
2018
http://aclweb.org/anthology/D18-1346
Code-switched Language Models Using Dual RNNs and Same-Source Pretraining
This work focuses on building language models (LMs) for code-switched text. We propose two techniques that significantly improve these LMs: 1) A novel recurrent neural network unit with dual components that focus on each language in the code-switched text separately 2) Pretraining the LM using synthetic text from a generative model estimated using the training data. We demonstrate the effectiveness of our proposed techniques by reporting perplexities on a Mandarin-English task and derive significant reductions in perplexity.
EMNLP
2018
http://aclweb.org/anthology/D18-1347
Part-of-Speech Tagging for Code-Switched, Transliterated Texts without Explicit Language Identification
Machine Translation for Indian languages is an emerging research area. Transliteration is one such module that we design while designing a translation system. Transliteration means mapping of source language text into the target language. Simple mapping decreases the efficiency of overall translation system. We propose the use of stemming and part-of-speech tagging for transliteration. The effectiveness of translation can be improved if we use part-of-speech tagging and stemming assisted transliteration.We have shown that much of the content in Gujarati gets transliterated while being processed for translation to Hindi language.
EMNLP
2018
http://aclweb.org/anthology/D18-1348
Zero-shot User Intent Detection via Capsule Neural Networks
User intent detection plays a critical role in question-answering and dialog systems. Most previous works treat intent detection as a classification problem where utterances are labeled with predefined intents. However, it is labor-intensive and time-consuming to label users' utterances as intents are diversely expressed and novel intents will continually be involved. Instead, we study the zero-shot intent detection problem, which aims to detect emerging user intents where no labeled utterances are currently available. We propose two capsule-based architectures: INTENT-CAPSNET that extracts semantic features from utterances and aggregates them to discriminate existing intents, and INTENTCAPSNET-ZSL which gives INTENTCAPSNET the zero-shot learning ability to discriminate emerging intents via knowledge transfer from existing intents. Experiments on two real-world datasets show that our model not only can better discriminate diversely expressed existing intents, but is also able to discriminate emerging intents when no labeled utterances are available.
EMNLP
2018
http://aclweb.org/anthology/D18-1349
Hierarchical Neural Networks for Sequential Sentence Classification in Medical Scientific Abstracts
Prevalent models based on artificial neural network (ANN) for sentence classification often classify sentences in isolation without considering the context in which sentences appear. This hampers the traditional sentence classification approaches to the problem of sequential sentence classification, where structured prediction is needed for better overall classification performance. In this work, we present a hierarchical sequential labeling network to make use of the contextual information within surrounding sentences to help classify the current sentence. Our model outperforms the state-of-the-art results by 2%-3% on two benchmarking datasets for sequential sentence classification in medical scientific abstracts.
EMNLP
2018
http://aclweb.org/anthology/D18-1350
Investigating Capsule Networks with Dynamic Routing for Text Classification
In this study, we explore capsule networks with dynamic routing for text classification. We propose three strategies to stabilize the dynamic routing process to alleviate the disturbance of some noise capsules which may contain "background" information or have not been successfully trained. A series of experiments are conducted with capsule networks on six text classification benchmarks. Capsule networks achieve state of the art on 4 out of 6 datasets, which shows the effectiveness of capsule networks for text classification. We additionally show that capsule networks exhibit significant improvement when transfer single-label to multi-label text classification over strong baseline methods. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for text modeling.
EMNLP
2018
http://aclweb.org/anthology/D18-1351
Topic Memory Networks for Short Text Classification
Many classification models work poorly on short texts due to data sparsity. To address this issue, we propose topic memory networks for short text classification with a novel topic memory mechanism to encode latent topic representations indicative of class labels. Different from most prior work that focuses on extending features with external knowledge or pre-trained topics, our model jointly explores topic inference and text classification with memory networks in an end-to-end manner. Experimental results on four benchmark datasets show that our model outperforms state-of-the-art models on short text classification, meanwhile generates coherent topics.
EMNLP
2018
http://aclweb.org/anthology/D18-1352
Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces
Multi-label learning problems have manifested themselves in various machine learning applications. The key to successful multi-label learning algorithms lies in the exploration of inter-label correlations, which usually incur great computational cost. Another notable factor in multi-label learning is that the label vectors are usually extremely sparse, especially when the candidate label vocabulary is very large and only a few instances are assigned to each category. Recently, a label space transformation (LST) framework has been proposed targeting these challenges. However, current methods based on LST usually suffer from information loss in the label space dimension reduction process and fail to address the sparsity problem effectively. In this paper, we propose a distribution-based label space transformation (DLST) model. By defining the distribution based on the similarity of label vectors, a more comprehensive label structure can be captured. Then, by minimizing KL-divergence of two distributions, the information of the original label space can be approximately preserved in the latent space. Consequently, multi-label classifier trained using the dense latent codes yields better performance. The leverage of distribution enables DLST to fill out additional information about the label correlations. This endows DLST the capability to handle label set sparsity and training data sparsity in multi-label learning problems. With the optimal latent code, a kernel logistic regression function is learned for the mapping from feature space to the latent space. Then ML-KNN is employed to recover the original label vector from the transformed latent code. Extensive experiments on several benchmark datasets demonstrate that DLST not only achieves high classification performance but also is computationally more efficient.
EMNLP
2018
http://aclweb.org/anthology/D18-1353
Automatic Poetry Generation with Mutual Reinforcement Learning
With the recent advances of neural models and natural language processing, automatic generation of classical Chinese poetry has drawn significant attention due to its artistic and cultural value. Previous works mainly focus on generating poetry given keywords or other text information, while visual inspirations for poetry have been rarely explored. Generating poetry from images is much more challenging than generating poetry from text, since images contain very rich visual information which cannot be described completely using several keywords, and a good poem should convey the image accurately. In this paper, we propose a memory based neural model which exploits images to generate poems. Specifically, an Encoder-Decoder model with a topic memory network is proposed to generate classical Chinese poetry from images. To the best of our knowledge, this is the first work attempting to generate classical Chinese poetry from images with neural networks. A comprehensive experimental investigation with both human evaluation and quantitative analysis demonstrates that the proposed model can generate poems which convey images accurately.
EMNLP
2018
http://aclweb.org/anthology/D18-1354
Variational Autoregressive Decoder for Neural Response Generation
Autoregressive decoding is the only part of sequence-to-sequence models that prevents them from massive parallelization at inference time. Non-autoregressive models enable the decoder to generate all output symbols independently in parallel. We present a novel non-autoregressive architecture based on connectionist temporal classification and evaluate it on the task of neural machine translation. Unlike other non-autoregressive methods which operate in several steps, our model can be trained end-to-end. We conduct experiments on the WMT English-Romanian and English-German datasets. Our models achieve a significant speedup over the autoregressive models, keeping the translation quality comparable to other non-autoregressive models.
EMNLP
2018
http://aclweb.org/anthology/D18-1355
Integrating Transformer and Paraphrase Rules for Sentence Simplification
Sentence simplification aims to reduce the complexity of a sentence while retaining its original meaning. Current models for sentence simplification adopted ideas from ma- chine translation studies and implicitly learned simplification mapping rules from normal- simple sentence pairs. In this paper, we explore a novel model based on a multi-layer and multi-head attention architecture and we pro- pose two innovative approaches to integrate the Simple PPDB (A Paraphrase Database for Simplification), an external paraphrase knowledge base for simplification that covers a wide range of real-world simplification rules. The experiments show that the integration provides two major benefits: (1) the integrated model outperforms multiple state- of-the-art baseline models for sentence simplification in the literature (2) through analysis of the rule utilization, the model seeks to select more accurate simplification rules. The code and models used in the paper are available at https://github.com/ Sanqiang/text_simplification.
EMNLP
2018
http://aclweb.org/anthology/D18-1356
Learning Neural Templates for Text Generation
While neural, encoder-decoder models have had significant empirical success in text generation, there remain several unaddressed problems with this style of generation. Encoder-decoder models are largely (a) uninterpretable, and (b) difficult to control in terms of their phrasing or content. This work proposes a neural generation system using a hidden semi-markov model (HSMM) decoder, which learns latent, discrete templates jointly with learning to generate. We show that this model learns useful templates, and that these templates make generation both more interpretable and controllable. Furthermore, we show that this approach scales to real data sets and achieves strong performance nearing that of encoder-decoder text generation models.
EMNLP
2018
http://aclweb.org/anthology/D18-1357
Multi-Reference Training with Pseudo-References for Neural Translation and Text Generation
We propose a neural machine translation architecture that models the surrounding text in addition to the source sentence. These models lead to better performance, both in terms of general translation quality and pronoun prediction, when trained on small corpora, although this improvement largely disappears when trained with a larger corpus. We also discover that attention-based neural machine translation is well suited for pronoun prediction and compares favorably with other approaches that were specifically designed for this task.
EMNLP
2018
http://aclweb.org/anthology/D18-1358
Knowledge Graph Embedding with Hierarchical Relation Structure
Populating ontology graphs represents a long-standing problem for the Semantic Web community. Recent advances in translation-based graph embedding methods for populating instance-level knowledge graphs lead to promising new approaching for the ontology population problem. However, unlike instance-level graphs, the majority of relation facts in ontology graphs come with comprehensive semantic relations, which often include the properties of transitivity and symmetry, as well as hierarchical relations. These comprehensive relations are often too complex for existing graph embedding methods, and direct application of such methods is not feasible. Hence, we propose On2Vec, a novel translation-based graph embedding method for ontology population. On2Vec integrates two model components that effectively characterize comprehensive relation facts in ontology graphs. The first is the Component-specific Model that encodes concepts and relations into low-dimensional embedding spaces without a loss of relational properties; the second is the Hierarchy Model that performs focused learning of hierarchical relation facts. Experiments on several well-known ontology graphs demonstrate the promising capabilities of On2Vec in predicting and verifying new relation facts. These promising results also make possible significant improvements in related methods.
EMNLP
2018
http://aclweb.org/anthology/D18-1359
Embedding Multimodal Relational Data for Knowledge Base Completion
Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on simple link structure between a finite set of entities, ignoring the variety of data types that are often used in knowledge bases, such as text, images, and numerical values. In this paper, we propose multimodal knowledge base embeddings (MKBE) that use different neural encoders for this variety of observed data, and combine them with existing relational models to learn embeddings of the entities and multimodal data. Further, using these learned embedings and different neural decoders, we introduce a novel multimodal imputation model to generate missing multimodal values, like text and images, from information in the knowledge base. We enrich existing relational datasets to create two novel benchmarks that contain additional information such as textual descriptions and images of the original entities. We demonstrate that our models utilize this additional information effectively to provide more accurate link prediction, achieving state-of-the-art results with a considerable gap of 5-7% over existing methods. Further, we evaluate the quality of our generated multimodal values via a user study. We have release the datasets and the open-source implementation of our models at https://github.com/pouyapez/mkbe
EMNLP
2018
http://aclweb.org/anthology/D18-1360
Multi-Task Identification of Entities, Relations, and Coreference for Scientific Knowledge Graph Construction
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
EMNLP
2018
http://aclweb.org/anthology/D18-1361
Playing 20 Question Game with Policy-Based Reinforcement Learning
The 20 Questions (Q20) game is a well known game which encourages deductive reasoning and creativity. In the game, the answerer first thinks of an object such as a famous person or a kind of animal. Then the questioner tries to guess the object by asking 20 questions. In a Q20 game system, the user is considered as the answerer while the system itself acts as the questioner which requires a good strategy of question selection to figure out the correct object and win the game. However, the optimal policy of question selection is hard to be derived due to the complexity and volatility of the game environment. In this paper, we propose a novel policy-based Reinforcement Learning (RL) method, which enables the questioner agent to learn the optimal policy of question selection through continuous interactions with users. To facilitate training, we also propose to use a reward network to estimate the more informative reward. Compared to previous methods, our RL method is robust to noisy answers and does not rely on the Knowledge Base of objects. Experimental results show that our RL method clearly outperforms an entropy-based engineering system and has competitive performance in a noisy-free simulation environment.
EMNLP
2018
http://aclweb.org/anthology/D18-1362
Multi-Hop Knowledge Graph Reasoning with Reward Shaping
Multi-hop reasoning is an effective approach for query answering (QA) over incomplete knowledge graphs (KGs). The problem can be formulated in a reinforcement learning (RL) setup, where a policy-based agent sequentially extends its inference path until it reaches a target. However, in an incomplete KG environment, the agent receives low-quality rewards corrupted by false negatives in the training data, which harms generalization at test time. Furthermore, since no golden action sequence is used for training, the agent can be misled by spurious search trajectories that incidentally lead to the correct answer. We propose two modeling advances to address both issues: (1) we reduce the impact of false negative supervision by adopting a pretrained one-hop embedding model to estimate the reward of unobserved facts; (2) we counter the sensitivity to spurious paths of on-policy RL by forcing the agent to explore a diverse set of paths using randomly generated edge masks. Our approach significantly improves over existing path-based KGQA models on several benchmark datasets and is comparable or better than embedding-based models.
EMNLP
2018
http://aclweb.org/anthology/D18-1363
Neural Transductive Learning and Beyond: Morphological Generation in the Minimal-Resource Setting
Inductive learning is based on inferring a general rule from a finite data set and using it to label new data. In transduction one attempts to solve the problem of using a labeled training set to label a set of unlabeled points, which are given to the learner prior to learning. Although transduction seems at the outset to be an easier task than induction, there have not been many provably useful algorithms for transduction. Moreover, the precise relation between induction and transduction has not yet been determined. The main theoretical developments related to transduction were presented by Vapnik more than twenty years ago. One of Vapnik's basic results is a rather tight error bound for transductive classification based on an exact computation of the hypergeometric tail. While tight, this bound is given implicitly via a computational routine. Our first contribution is a somewhat looser but explicit characterization of a slightly extended PAC-Bayesian version of Vapnik's transductive bound. This characterization is obtained using concentration inequalities for the tail of sums of random variables obtained by sampling without replacement. We then derive error bounds for compression schemes such as (transductive) support vector machines and for transduction algorithms based on clustering. The main observation used for deriving these new error bounds and algorithms is that the unlabeled test points, which in the transductive setting are known in advance, can be used in order to construct useful data dependent prior distributions over the hypothesis space.
EMNLP
2018
http://aclweb.org/anthology/D18-1364
Implicational Universals in Stochastic Constraint-Based Phonology
A new scheme to represent phonological changes during continuous speech recognition is suggested. A phonological tag coupled with its morphological tag is designed to represent the conditions of Korean phonological changes. A pairwise language model of these morphological and phonological tags is implemented in Korean speech recognition system. Performance of the model is verified through the TDNN-based speech recognition experiments.
EMNLP
2018
http://aclweb.org/anthology/D18-1365
Explaining Character-Aware Neural Networks for Word-Level Prediction: Do They Discover Linguistic Rules?
Character-level features are currently used in different neural network-based natural language processing algorithms. However, little is known about the character-level patterns those models learn. Moreover, models are often compared only quantitatively while a qualitative analysis is missing. In this paper, we investigate which character-level patterns neural networks learn and if those patterns coincide with manually-defined word segmentations and annotations. To that end, we extend the contextual decomposition technique (Murdoch et al. 2018) to convolutional neural networks which allows us to compare convolutional neural networks and bidirectional long short-term memory networks. We evaluate and compare these models for the task of morphological tagging on three morphologically different languages and show that these models implicitly discover understandable linguistic rules. Our implementation can be found at https://github.com/FredericGodin/ContextualDecomposition-NLP .
EMNLP
2018
http://aclweb.org/anthology/D18-1366
Adapting Word Embeddings to New Languages with Morphological and Phonological Subword Representations
Much work in Natural Language Processing (NLP) has been for resource-rich languages, making generalization to new, less-resourced languages challenging. We present two approaches for improving generalization to low-resourced languages by adapting continuous word representations using linguistically motivated subword units: phonemes, morphemes and graphemes. Our method requires neither parallel corpora nor bilingual dictionaries and provides a significant gain in performance over previous methods relying on these resources. We demonstrate the effectiveness of our approaches on Named Entity Recognition for four languages, namely Uyghur, Turkish, Bengali and Hindi, of which Uyghur and Bengali are low resource languages, and also perform experiments on Machine Translation. Exploiting subwords with transfer learning gives us a boost of +15.2 NER F1 for Uyghur and +9.7 F1 for Bengali. We also show improvements in the monolingual setting where we achieve (avg.) +3 F1 and (avg.) +1.35 BLEU.
EMNLP
2018
http://aclweb.org/anthology/D18-1367
A Computational Exploration of Exaggeration
Facial caricature is an art form of drawing faces in an exaggerated way to convey humor or sarcasm. In this paper, we propose the first Generative Adversarial Network (GAN) for unpaired photo-to-caricature translation, which we call "CariGANs". It explicitly models geometric exaggeration and appearance stylization using two components: CariGeoGAN, which only models the geometry-to-geometry transformation from face photos to caricatures, and CariStyGAN, which transfers the style appearance from caricatures to face photos without any geometry deformation. In this way, a difficult cross-domain translation problem is decoupled into two easier tasks. The perceptual study shows that caricatures generated by our CariGANs are closer to the hand-drawn ones, and at the same time better persevere the identity, compared to state-of-the-art methods. Moreover, our CariGANs allow users to control the shape exaggeration degree and change the color/texture style by tuning the parameters or giving an example caricature.
EMNLP
2018
http://aclweb.org/anthology/D18-1368
Building Context-aware Clause Representations for Situation Entity Type Classification
Capabilities to categorize a clause based on the type of situation entity (e.g., events, states and generic statements) the clause introduces to the discourse can benefit many NLP applications. Observing that the situation entity type of a clause depends on discourse functions the clause plays in a paragraph and the interpretation of discourse functions depends heavily on paragraph-wide contexts, we propose to build context-aware clause representations for predicting situation entity types of clauses. Specifically, we propose a hierarchical recurrent neural network model to read a whole paragraph at a time and jointly learn representations for all the clauses in the paragraph by extensively modeling context influences and inter-dependencies of clauses. Experimental results show that our model achieves the state-of-the-art performance for clause-level situation entity classification on the genre-rich MASC+Wiki corpus, which approaches human-level performance.
EMNLP
2018
http://aclweb.org/anthology/D18-1369
Hierarchical Dirichlet Gaussian Marked Hawkes Process for Narrative Reconstruction in Continuous Time Domain
People are increasingly relying on the Web and social media to find solutions to their problems in a wide range of domains. In this online setting, closely related problems often lead to the same characteristic learning pattern, in which people sharing these problems visit related pieces of information, perform almost identical queries or, more generally, take a series of similar actions. In this paper, we introduce a novel modeling framework for clustering continuous-time grouped streaming data, the hierarchical Dirichlet Hawkes process (HDHP), which allows us to automatically uncover a wide variety of learning patterns from detailed traces of learning activity. Our model allows for efficient inference, scaling to millions of actions taken by thousands of users. Experiments on real data gathered from Stack Overflow reveal that our framework can recover meaningful learning patterns in terms of both content and temporal dynamics, as well as accurately track users' interests and goals over time.
EMNLP
2018
http://aclweb.org/anthology/D18-1370
Investigating the Role of Argumentation in the Rhetorical Analysis of Scientific Publications with Neural Multi-Task Learning Models
The goal of this research was to find a way to extend the capabilities of computers through the processing of language in a more human way, and present applications which demonstrate the power of this method. This research presents a novel approach, Rhetorical Analysis, to solving problems in Natural Language Processing (NLP). The main benefit of Rhetorical Analysis, as opposed to previous approaches, is that it does not require the accumulation of large sets of training data, but can be used to solve a multitude of problems within the field of NLP. The NLP problems investigated with Rhetorical Analysis were the Author Identification problem - predicting the author of a piece of text based on its rhetorical strategies, Election Prediction - predicting the winner of a presidential candidate's re-election campaign based on rhetorical strategies within that president's inaugural address, Natural Language Generation - having a computer produce text containing rhetorical strategies, and Document Summarization. The results of this research indicate that an Author Identification system based on Rhetorical Analysis could predict the correct author 100% of the time, that a re-election predictor based on Rhetorical Analysis could predict the correct winner of a re-election campaign 55% of the time, that a Natural Language Generation system based on Rhetorical Analysis could output text with up to 87.3% similarity to Shakespeare in style, and that a Document Summarization system based on Rhetorical Analysis could extract highly relevant sentences. Overall, this study demonstrated that Rhetorical Analysis could be a useful approach to solving problems in NLP.
EMNLP
2018
http://aclweb.org/anthology/D18-1371
Neural Ranking Models for Temporal Dependency Structure Parsing
We design and build the first neural temporal dependency parser. It utilizes a neural ranking model with minimal feature engineering, and parses time expressions and events in a text into a temporal dependency tree structure. We evaluate our parser on two domains: news reports and narrative stories. In a parsing-only evaluation setup where gold time expressions and events are provided, our parser reaches 0.81 and 0.70 f-score on unlabeled and labeled parsing respectively, a result that is very competitive against alternative approaches. In an end-to-end evaluation setup where time expressions and events are automatically recognized, our parser beats two strong baselines on both data domains. Our experimental results and discussions shed light on the nature of temporal dependency structures in different domains and provide insights that we believe will be valuable to future research in this area.
EMNLP
2018
http://aclweb.org/anthology/D18-1372
Causal Explanation Analysis on Social Media
Understanding causal explanations - reasons given for happenings in one's life - has been found to be an important psychological factor linked to physical and mental health. Causal explanations are often studied through manual identification of phrases over limited samples of personal writing. Automatic identification of causal explanations in social media, while challenging in relying on contextual and sequential cues, offers a larger-scale alternative to expensive manual ratings and opens the door for new applications (e.g. studying prevailing beliefs about causes, such as climate change). Here, we explore automating causal explanation analysis, building on discourse parsing, and presenting two novel subtasks: causality detection (determining whether a causal explanation exists at all) and causal explanation identification (identifying the specific phrase that is the explanation). We achieve strong accuracies for both tasks but find different approaches best: an SVM for causality prediction (F1 = 0.791) and a hierarchy of Bidirectional LSTMs for causal explanation identification (F1 = 0.853). Finally, we explore applications of our complete pipeline (F1 = 0.868), showing demographic differences in mentions of causal explanation and that the association between a word and sentiment can change when it is used within a causal explanation.
EMNLP
2018
http://aclweb.org/anthology/D18-1373
LRMM: Learning to Recommend with Missing Modalities
Multimodal learning has shown promising performance in content-based recommendation due to the auxiliary user and item information of multiple modalities such as text and images. However, the problem of incomplete and missing modality is rarely explored and most existing methods fail in learning a recommendation model with missing or corrupted modalities. In this paper, we propose LRMM, a novel framework that mitigates not only the problem of missing modalities but also more generally the cold-start problem of recommender systems. We propose modality dropout (m-drop) and a multimodal sequential autoencoder (m-auto) to learn multimodal representations for complementing and imputing missing modalities. Extensive experiments on real-world Amazon data show that LRMM achieves state-of-the-art performance on rating prediction tasks. More importantly, LRMM is more robust to previous methods in alleviating data-sparsity and the cold-start problem.
EMNLP
2018
http://aclweb.org/anthology/D18-1374
Content Explorer: Recommending Novel Entities for a Document Writer
Writer identification from musical score documents is a challenging task due to its inherent problem of overlapping of musical symbols with staff lines. Most of the existing works in the literature of writer identification in musical score documents were performed after a preprocessing stage of staff lines removal. In this paper we propose a novel writer identification framework in musical documents without removing staff lines from documents. In our approach, Hidden Markov Model has been used to model the writing style of the writers without removing staff lines. The sliding window features are extracted from musical score lines and they are used to build writer specific HMM models. Given a query musical sheet, writer specific confidence for each musical line is returned by each writer specific model using a loglikelihood score. Next, a loglikelihood score in page level is computed by weighted combination of these scores from the corresponding line images of the page. A novel Factor Analysis based feature selection technique is applied in sliding window features to reduce the noise appearing from staff lines which proves efficiency in writer identification performance.In our framework we have also proposed a novel score line detection approach in musical sheet using HMM. The experiment has been performed in CVC-MUSCIMA dataset and the results obtained that the proposed approach is efficient for score line detection and writer identification without removing staff lines. To get the idea of computation time of our method, detail analysis of execution time is also provided.
EMNLP
2018