File size: 5,728 Bytes
e282c57 0ed0ca2 e282c57 0ed0ca2 7b84e20 0ed0ca2 7b84e20 0ed0ca2 e9a221e 0ed0ca2 e9a221e 0ed0ca2 e9a221e a43f39a 0ed0ca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
license: other
license_name: other
license_link: LICENSE
language:
- zh
- vi
- id
- ms
- tl
- my
- th
- lo
- km
- ta
---
# SEA-LION-Pile
SEA-LION-Pile is the pretraining data set for SEA-LION, a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
This repository contains the cleaned mC4 portion of the SEA-LION-Pile.
For the remainder of the SEA-LION-Pile dataset, they may be downloaded from the links provided below.
## Dataset Details
SEA-LION was trained on 980B tokens of the following data:
| Data Source | Unique Tokens | Multiplier | Total Tokens | Percentage |
|---------------------------|:-------------:|:----------:|:------------:|:----------:|
| RefinedWeb - English | 571.3B | 1 | 571.3B | 58.20% |
| mC4 - Chinese | 91.2B | 1 | 91.2B | 9.29% |
| mC4 - Indonesian | 3.68B | 4 | 14.7B | 1.50% |
| mC4 - Malay | 0.72B | 4 | 2.9B | 0.29% |
| mC4 - Filipino | 1.32B | 4 | 5.3B | 0.54% |
| mC4 - Burmese | 1.2B | 4 | 4.9B | 0.49% |
| mC4 - Vietnamese | 63.4B | 1 | 63.4B | 6.46% |
| mC4 - Thai | 5.8B | 2 | 11.6B | 1.18% |
| WangChanBERTa - Thai | 5B | 2 | 10B | 1.02% |
| mC4 - Lao | 0.27B | 4 | 1.1B | 0.12% |
| mC4 - Khmer | 0.97B | 4 | 3.9B | 0.40% |
| mC4 - Tamil | 2.55B | 4 | 10.2B | 1.04% |
| the Stack - Python | 20.9B | 2 | 41.8B | 4.26% |
| the Stack - Javascript | 55.6B | 1 | 55.6B | 5.66% |
| the Stack - Shell | 1.2B5 | 2 | 2.5B | 0.26% |
| the Stack - SQL | 6.4B | 2 | 12.8B | 1.31% |
| the Stack - Markdown | 26.6B | 1 | 26.6B | 2.71% |
| RedPajama - StackExchange | 21.2B | 1 | 21.2B | 2.16% |
| RedPajama - ArXiv | 30.6B | 1 | 30.6B | 3.12% |
### Additional SEA-LION-Pile (non-mC4) Data Sources
This section contains the links to the additional datasets that form the SEA-LION-Pile.
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [the Stack (Python, Javascript, Shell, SQL, Markdown)](https://huggingface.co/datasets/bigcode/the-stack-dedup)
- [RedPajama (StackExchange, ArXiv)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
- WangChanBERTa
- [scb_mt_enth_2020](https://huggingface.co/datasets/scb_mt_enth_2020)
- [prachathai67k](https://huggingface.co/datasets/prachathai67k)
- [thaisum](https://huggingface.co/datasets/thaisum)
- [Opus - bible-uedin](https://opus.nlpl.eu/bible-uedin.php)
- [Opus - Tanzil](https://opus.nlpl.eu/Tanzil.php)
- [Opus - Opensubtitles](https://opus.nlpl.eu/OpenSubtitles-v2018.php)
- [Opus - QED](https://opus.nlpl.eu/QED.php)
- [Opus - Ted2020](https://opus.nlpl.eu/TED2020.php)
- [Opus - Oscar](https://oscar-project.org/post/news-23-01)
### Limitations
- As toxic or biased data is prevalent on the internet, it is likely our dataset contains such content.
- Despite our best efforts to filter content that does not qualify as natural language, and to deduplicate documents, our pipeline may let through documents that may be considered as errors or redundant.
### License
This public extract of mC4 is made available under [ODC-By 1.0](https://opendatacommons.org/licenses/by/1-0/) license; users should also abide to the [CommonCrawl ToU](https://commoncrawl.org/terms-of-use/).
For all other licenses, please refer to their individual pages above.
We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data. For other new data, we have obtained permission to use and distribute.
## References
```bibtex
@misc{lowphansirikul2021wangchanberta,
title={WangchanBERTa: Pretraining transformer-based Thai Language Models},
author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},
year={2021},
eprint={2101.09635},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{refinedweb,
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
journal={arXiv preprint arXiv:2306.01116},
eprint={2306.01116},
eprinttype = {arXiv},
url={https://arxiv.org/abs/2306.01116},
year={2023}
}
@article{Kocetkov2022TheStack,
title={The Stack: 3 TB of permissively licensed source code},
author={Kocetkov, Denis and Li, Raymond and Ben Allal, Loubna and Li, Jia and Mou,Chenghao and Muñoz Ferrandis, Carlos and Jernite, Yacine and Mitchell, Margaret and Hughes, Sean and Wolf, Thomas and Bahdanau, Dzmitry and von Werra, Leandro and de Vries, Harm},
journal={Preprint},
year={2022}
}
@software{together2023redpajama,
author = {Together Computer},
title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset},
month = April,
year = 2023,
url = {https://github.com/togethercomputer/RedPajama-Data}
}
```
|