|
---
|
|
annotations_creators:
|
|
- no-annotation
|
|
language_creators:
|
|
- found
|
|
languages:
|
|
- as
|
|
- bn
|
|
- gu
|
|
- hi
|
|
- kn
|
|
- ml
|
|
- mr
|
|
- or
|
|
- pa
|
|
- ta
|
|
- te
|
|
licenses:
|
|
- cc-by-nc-4.0
|
|
multilinguality:
|
|
- multilingual
|
|
pretty_name: IndicParaphrase
|
|
size_categories:
|
|
- 1M<n<10M
|
|
source_datasets:
|
|
- original
|
|
task_categories:
|
|
- conditional-text-generation
|
|
task_ids:
|
|
- conditional-text-generation-other-paraphrase-generation
|
|
---
|
|
# Dataset Card for "XL-Sum"
|
|
## Table of Contents
|
|
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
|
|
- [Table of Contents](#table-of-contents)
|
|
- [Dataset Description](#dataset-description)
|
|
- [Dataset Summary](#dataset-summary)
|
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
|
- [Languages](#languages)
|
|
- [Dataset Structure](#dataset-structure)
|
|
- [Data Instances](#data-instances)
|
|
- [Data Fields](#data-fields)
|
|
- [Data Splits](#data-splits)
|
|
- [Dataset Creation](#dataset-creation)
|
|
- [Curation Rationale](#curation-rationale)
|
|
- [Source Data](#source-data)
|
|
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
|
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
|
- [Annotations](#annotations)
|
|
- [Annotation process](#annotation-process)
|
|
- [Who are the annotators?](#who-are-the-annotators)
|
|
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
|
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
|
- [Social Impact of Dataset](#social-impact-of-dataset)
|
|
- [Discussion of Biases](#discussion-of-biases)
|
|
- [Other Known Limitations](#other-known-limitations)
|
|
- [Additional Information](#additional-information)
|
|
- [Dataset Curators](#dataset-curators)
|
|
- [Licensing Information](#licensing-information)
|
|
- [Citation Information](#citation-information)
|
|
- [Contributions](#contributions)
|
|
## Dataset Description
|
|
- **Homepage:** https://indicnlp.ai4bharat.org/indicnlg-suite
|
|
- **Paper:** [IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages](https://arxiv.org/abs/2203.05437)
|
|
- **Point of Contact:**
|
|
### Dataset Summary
|
|
IndicParaphrase is the paraphrasing dataset released as part of IndicNLG Suite. Each
|
|
input is paired with up to 5 references. We create this dataset in eleven
|
|
languages including as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. The total
|
|
size of the dataset is 5.57M.
|
|
### Supported Tasks and Leaderboards
|
|
**Tasks:** Paraphrase generation
|
|
|
|
**Leaderboards:** Currently there is no Leaderboard for this dataset.
|
|
### Languages
|
|
- `Assamese (as)`
|
|
- `Bengali (bn)`
|
|
- `Gujarati (gu)`
|
|
- `Kannada (kn)`
|
|
- `Hindi (hi)`
|
|
- `Malayalam (ml)`
|
|
- `Marathi (mr)`
|
|
- `Oriya (or)`
|
|
- `Punjabi (pa)`
|
|
- `Tamil (ta)`
|
|
- `Telugu (te)`
|
|
## Dataset Structure
|
|
### Data Instances
|
|
One example from the `hi` dataset is given below in JSON format.
|
|
```
|
|
{
|
|
'id': '1',
|
|
'input': 'निजी क्षेत्र में प्रदेश की 75 प्रतिशत नौकरियां हरियाणा के युवाओं के लिए आरक्षित की जाएगी।',
|
|
'references': ['प्रदेश के युवाओं को निजी उद्योगों में 75 प्रतिशत आरक्षण देंगे।',
|
|
'युवाओं के लिए हरियाणा की सभी प्राइवेट नौकरियों में 75 प्रतिशत आरक्षण लागू किया जाएगा।',
|
|
'निजी क्षेत्र में 75 प्रतिशत आरक्षित लागू कर प्रदेश के युवाओं का रोजगार सुनिश्चत किया जाएगा।',
|
|
'प्राईवेट कम्पनियों में हरियाणा के नौजवानों को 75 प्रतिशत नौकरियां में आरक्षित की जाएगी।',
|
|
'प्रदेश की प्राइवेट फैक्टरियों में 75 फीसदी रोजगार हरियाणा के युवाओं के लिए आरक्षित किए जाएंगे।'],
|
|
'target': 'प्रदेश के युवाओं को निजी उद्योगों में 75 प्रतिशत आरक्षण देंगे।'
|
|
}
|
|
```
|
|
### Data Fields
|
|
- `id (string)`: Unique identifier.
|
|
- `input (string)`: Input sentence
|
|
- `references (list of strings)`: Paraphrases of `input` , ordered according to the least n-gram overlap
|
|
- `target (string)`: The first reference (most dissimilar paraphrase)
|
|
|
|
### Data Splits
|
|
We first select 10K instances each for the validation and test and put remaining in the training dataset. `Assamese (as)`, due to its low-resource nature, could only be split into validation and test sets with 4,420 examples each.
|
|
Individual dataset with train-dev-test example counts are given below:
|
|
Language | ISO 639-1 Code |Train | Dev | Test |
|
|
--------------|----------------|-------|-----|------|
|
|
Assamese | as | - | 4,420 | 4,420 |
|
|
Bengali | bn | 890,445 | 10,000 | 10,000 |
|
|
Gujarati | gu | 379,202 | 10,000 | 10,000 |
|
|
Hindi | hi | 929,507 | 10,000 | 10,000 |
|
|
Kannada | kn | 522,148 | 10,000 | 10,000 |
|
|
Malayalam | ml |761,933 | 10,000 | 10,000 |
|
|
Marathi | mr |406,003 | 10,000 | 10,000 |
|
|
Oriya | or | 105,970 | 10,000 | 10,000 |
|
|
Punjabi | pa | 266,704 | 10,000 | 10,000 |
|
|
Tamil | ta | 497,798 | 10,000 | 10,000 |
|
|
Telugu | te | 596,283 | 10,000 | 10,000 |
|
|
|
|
## Dataset Creation
|
|
### Curation Rationale
|
|
[More information needed]
|
|
### Source Data
|
|
[Samanantar dataset](https://indicnlp.ai4bharat.org/samanantar/)
|
|
#### Initial Data Collection and Normalization
|
|
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
|
#### Who are the source language producers?
|
|
[Detailed in the paper](https://arxiv.org/abs/2203.05437)
|
|
|
|
### Personal and Sensitive Information
|
|
[More information needed]
|
|
## Considerations for Using the Data
|
|
### Social Impact of Dataset
|
|
[More information needed]
|
|
### Discussion of Biases
|
|
[More information needed]
|
|
### Other Known Limitations
|
|
[More information needed]
|
|
## Additional Information
|
|
### Dataset Curators
|
|
[More information needed]
|
|
### Licensing Information
|
|
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
|
|
### Citation Information
|
|
If you use any of the datasets, models or code modules, please cite the following paper:
|
|
```
|
|
@inproceedings{Kumar2022IndicNLGSM,
|
|
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
|
|
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
|
|
year={2022},
|
|
url = "https://arxiv.org/abs/2203.05437"
|
|
```
|
|
### Contributions
|
|
|