Datasets:

ArXiv:
License:
File size: 7,599 Bytes
f948138
f2d0950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f948138
f2d0950
 
 
 
 
 
 
 
 
a62314e
f948138
f2d0950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f0c93f
f2d0950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92afc3
 
 
 
 
 
 
 
f2d0950
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
language:
- as
- bn
- brx
- doi
- en
- gom
- gu
- hi
- kn
- ks
- mai
- ml
- mr
- mni
- ne
- or
- pa
- sa
- sat
- sd
- ta
- te
- ur
language_details: >-
  asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
  hin_Deva, kan_Knda, kas_Arab, mai_Deva, mal_Mlym, mar_Deva, mni_Mtei, 
  npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Deva, tam_Taml, 
  tel_Telu, urd_Arab
license: cc-by-4.0
language_creators:
- expert-generated
multilinguality:
- multilingual
- translation
pretty_name: in22-gen
size_categories:
- 1K<n<10K
task_categories:
- translation
---

# IN22-Gen

IN22 is a newly created comprehensive benchmark for evaluating machine translation performance in multi-domain, n-way parallel contexts across 22 Indic languages. IN22-Gen is a general-purpose multi-domain evaluation subset of IN22. It has been created from two sources: Wikipedia and Web Sources offering diverse content spanning news, entertainment, culture, legal, and India-centric topics. The evaluation subset consists of 1024 sentences translated across 22 Indic languages enabling evaluation of MT systems across 506 directions.

Here is the domain and source distribution of our IN22-Gen evaluation subset.

<table style="width: 40%">
    <tr>
        <td>domain</td>
        <td>web sources</td>
        <td>wikipedia</td>
    </tr>
    <tr>
        <td>culture</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>economy</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>education</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>entertainment</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>geography</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>governments</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>health</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>industry</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>legal</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>news</td>
        <td>32</td>
        <td>32</td>
    </tr>
    <tr>
        <td>religion</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>sports</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>tourism</td>
        <td>40</td>
        <td>40</td>
    </tr>
    <tr>
        <td>total</td>
        <td>512</td>
        <td>512</td>
    </tr>
</table>

Please refer to the `Appendix E: Dataset Card` of the [preprint](https://arxiv.org/abs/2305.16307) on detailed description of dataset curation, annotation and quality control process.


### Dataset Structure

#### Dataset Fields

- `id`: Row number for the data entry, starting at 1.
- `context`: Context window of 3 sentences, typically includes one sentence before and after the candidate sentence.
- `source`: The source from which the candidate sentence is considered.
- `url`: The URL for the English article from which the sentence was extracted. Only available for candidate sentences sourced from Wikipedia
- `domain`: The domain of the sentence.
- `num_words`: The number of words in the candidate sentence.
- `bucket`: Classification of the candidate sentence as per predefined bucket categories.
- `sentence`: The full sentence in the specific language (may have _lang for pairings)

#### Data Instances

A sample from the `gen` split for the English language (`eng_Latn` config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits.

```python
{
   "id": 1,
   "context": "A uniform is often viewed as projecting a positive image of an organisation. Maintaining personal hygiene is also an important aspect of personal appearance and dressing. An appearance is a bunch of attributes related with the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
   "source": "web",
   "url": "",
   "domain": "culture",
   "num_words": 24,
   "bucket": "18 - 25",
   "sentence": "An appearance is a bunch of attributes related to the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc."
}
```

When using a hyphenated pairing or using the `all` function, data will be presented as follows:

```python
{
   "id": 1,
   "context": "A uniform is often viewed as projecting a positive image of an organisation. Maintaining personal hygiene is also an important aspect of personal appearance and dressing. An appearance is a bunch of attributes related with the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
   "source": "web",
   "url": "",
   "domain": "culture",
   "num_words": 24,
   "bucket": "18 - 25",
   "sentence_eng_Latn": "An appearance is a bunch of attributes related to the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
   "sentence_hin_Deva": "सेवा संबंधी लोगों के लिए भेष कई गुणों का संयोजन है, जैसे कि उनके जूते, कपड़े, टाई, आभूषण, केश शैली, मेक-अप, घड़ी, कॉस्मेटिक, इत्र, आदि।"
}
```


### Usage Instructions

```python
from datasets import load_dataset

# download and load all the pairs
dataset = load_dataset("ai4bharat/IN22-Gen", "all")

# download and load specific pairs
dataset = load_dataset("ai4bharat/IN22-Gen", "eng_Latn-hin_Deva")
```

### Languages Covered

<table style="width: 40%">
    <tr>
        <td>Assamese (asm_Beng)</td>
        <td>Kashmiri (Arabic) (kas_Arab)</td>
        <td>Punjabi (pan_Guru)</td>
    </tr>
    <tr>
        <td>Bengali (ben_Beng)</td>
        <td>Kashmiri (Devanagari) (kas_Deva)</td>
        <td>Sanskrit (san_Deva)</td>
    </tr>
    <tr>
        <td>Bodo (brx_Deva)</td>
        <td>Maithili (mai_Deva)</td>
        <td>Santali (sat_Olck)</td>
    </tr>
    <tr>
        <td>Dogri (doi_Deva)</td>
        <td>Malayalam (mal_Mlym)</td>
        <td>Sindhi (Arabic) (snd_Arab)</td>
    </tr>
    <tr>
        <td>English (eng_Latn)</td>
        <td>Marathi (mar_Deva)</td>
        <td>Sindhi (Devanagari) (snd_Deva)</td>
    </tr>
    <tr>
        <td>Konkani (gom_Deva)</td>
        <td>Manipuri (Bengali) (mni_Beng)</td>
        <td>Tamil (tam_Taml)</td>
    </tr>
    <tr>
        <td>Gujarati (guj_Gujr)</td>
        <td>Manipuri (Meitei) (mni_Mtei)</td>
        <td>Telugu (tel_Telu)</td>
    </tr>
    <tr>
        <td>Hindi (hin_Deva)</td>
        <td>Nepali (npi_Deva)</td>
        <td>Urdu (urd_Arab)</td>
    </tr>
    <tr>
        <td>Kannada (kan_Knda)</td>
        <td>Odia (ory_Orya)</td>
    </tr>
</table>


### Citation

If you consider using our work then please cite using:

```
@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
note={}
}
```