File size: 8,417 Bytes
28128e7 c3a4bb0 ef32923 e418c1f ef32923 d773a8e 28128e7 e93476d 28128e7 e418c1f 28128e7 bdb3992 28128e7 837cc58 28128e7 e93476d 28128e7 e93476d 28128e7 e93476d 9787a70 28128e7 e93476d 28128e7 e93476d 28128e7 e93476d 2bbb799 e93476d 2bbb799 e93476d 2bbb799 e93476d 2bbb799 e93476d 2bbb799 28128e7 e93476d 28128e7 d773a8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
- machine-generated
- found
- other
language:
- asm
- ben
- brx
- doi
- guj
- hin
- kan
- kas
- kok
- mai
- mal
- mar
- mni
- nep
- ori
- pan
- san
- sid
- tam
- tel
- urd
license: cc
multilinguality:
- multilingual
pretty_name: Aksharantar
source_datasets:
- original
task_categories:
- text-generation
task_ids: []
---
# Dataset Card for Aksharantar
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://indicnlp.ai4bharat.org/indic-xlit/
- **Repository:** https://github.com/AI4Bharat/IndicXlit/
- **Paper:** [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Aksharantar is the largest publicly available transliteration dataset for 20 Indic languages. The corpus has 26M Indic language-English transliteration pairs.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
| <!-- --> | <!-- --> | <!-- --> | <!-- --> | <!-- --> | <!-- --> |
| -------------- | -------------- | -------------- | --------------- | -------------- | ------------- |
| Assamese (asm) | Hindi (hin) | Maithili (mai) | Marathi (mar) | Punjabi (pan) | Tamil (tam) |
| Bengali (ben) | Kannada (kan) | Malayalam (mal)| Nepali (nep) | Sanskrit (san) | Telugu (tel) |
| Bodo(brx) | Kashmiri (kas) | Manipuri (mni) | Oriya (ori) | Sindhi (snd) | Urdu (urd) |
| Gujarati (guj) | Konkani (kok) | Dogri (doi) |
## Dataset Structure
### Data Instances
```
A random sample from Hindi (hin) Train dataset.
{
'unique_identifier': 'hin1241393',
'native word': 'स्वाभिमानिक',
'english word': 'swabhimanik',
'source': 'IndicCorp',
'score': -0.1028788579
}
```
### Data Fields
- `unique_identifier` (string): 3-letter language code followed by a unique number in each set (Train, Test, Val).
- `native word` (string): A word in Indic language.
- `english word` (string): Transliteration of native word in English (Romanised word).
- `source` (string): Source of the data.
- `score` (num): Character level log probability of indic word given roman word by IndicXlit (model). Pairs with average threshold of the 0.35 are considered.
For created data sources, depending on the destination/sampling method of a pair in a language, it will be one of:
- Dakshina Dataset
- IndicCorp
- Samanantar
- Wikidata
- Existing sources
- Named Entities Indian (AK-NEI)
- Named Entities Foreign (AK-NEF)
- Data from Uniform Sampling method. (Ak-Uni)
- Data from Most Frequent words sampling method. (Ak-Freq)
### Data Splits
| Subset | asm-en | ben-en | brx-en | guj-en | hin-en | kan-en | kas-en | kok-en | mai-en | mal-en | mni-en | mar-en | nep-en | ori-en | pan-en | san-en | sid-en | tam-en | tel-en | urd-en |
|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| Training | 179K | 1231K | 36K | 1143K | 1299K | 2907K | 47K | 613K | 283K | 4101K | 10K | 1453K | 2397K | 346K | 515K | 1813K | 60K | 3231K | 2430K | 699K |
| Validation | 4K | 11K | 3K | 12K | 6K | 7K | 4K | 4K | 4K | 8K | 3K | 8K | 3K | 3K | 9K | 3K | 8K | 9K | 8K | 12K |
| Test | 5531 | 5009 | 4136 | 7768 | 5693 | 6396 | 7707 | 5093 | 5512 | 6911 | 4925 | 6573 | 4133 | 4256 | 4316 | 5334 | - | 4682 | 4567 | 4463 |
## Dataset Creation
Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)
#### Who are the source language producers?
[More Information Needed]
### Annotations
Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)
#### Annotation process
Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)
#### Who are the annotators?
Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
<!-- <a rel="license" float="left" href="http://creativecommons.org/publicdomain/zero/1.0/">
<img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100" />
<img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by.png" style="border-style: none;" alt="CC-BY" width="100" href="http://creativecommons.org/publicdomain/zero/1.0/"/>
</a>
<br/> -->
This data is released under the following licensing scheme:
- Manually collected data: Released under CC-BY license.
- Mined dataset (from Samanantar and IndicCorp): Released under CC0 license.
- Existing sources: Released under CC0 license.
**CC-BY License**
<a rel="license" float="left" href="https://creativecommons.org/about/cclicenses/">
<img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by.png" style="border-style: none;" alt="CC-BY" width="100"/>
</a>
<br>
<br>
<!--
and the Aksharantar benchmark and all manually transliterated data under the [Creative Commons CC-BY license (“no rights reserved”)](https://creativecommons.org/licenses/by/4.0/). -->
**CC0 License Statement**
<a rel="license" float="left" href="https://creativecommons.org/about/cclicenses/">
<img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100"/>
</a>
<br>
<br>
- We do not own any of the text from which this data has been extracted.
- We license the actual packaging of the mined data under the [Creative Commons CC0 license (“no rights reserved”)](http://creativecommons.org/publicdomain/zero/1.0).
- To the extent possible under law, <a rel="dct:publisher" href="https://indicnlp.ai4bharat.org/aksharantar/"> <span property="dct:title">AI4Bharat</span></a> has waived all copyright and related or neighboring rights to <span property="dct:title">Aksharantar</span> manually collected data and existing sources.
- This work is published from: India.
### Citation Information
```
@misc{madhani2022aksharantar,
title={Aksharantar: Towards Building Open Transliteration Tools for the Next Billion Users},
author={Yash Madhani and Sushane Parthan and Priyanka Bedekar and Ruchi Khapra and Anoop Kunchukuttan and Pratyush Kumar and Mitesh Shantadevi Khapra},
year={2022},
eprint={},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions |