Datasets:
File size: 4,294 Bytes
fa00aa4 b5046b3 7f27d58 b5046b3 c26795e e5fad8b c26795e fe4e0e3 c26795e fe4e0e3 0856734 c26795e 5bbc733 0856734 c26795e 0856734 c26795e 0856734 7f27d58 51b44c9 7f27d58 50c6aa9 7f27d58 c3ab8ef 7f27d58 50c6aa9 7f27d58 5d8c635 bedcc44 7f27d58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: other
task_categories:
- text-to-image
language:
- en
pretty_name: Peanuts Dataset (Snoopy and Co.)
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: image
dtype: image
- name: panel_name
dtype: string
- name: characters
sequence: string
- name: themes
sequence: string
- name: color
dtype: string
- name: year
dtype: int64
- name: caption
dtype: string
splits:
- name: train
num_bytes: 2948640650.848
num_examples: 77456
download_size: 4601323640
dataset_size: 2948640650.848
---
# Peanut Comic Strip Dataset (Snoopy & Co.)
![Peanuts 1999/01/30](preview.png)
This is a dataset Peanuts comic strips from `1950/10/02` to `2000/02/13`.
There are `77,457` panels extracted from `17,816` comic strips.
The dataset size is approximately `4.4G`.
Each row in the dataset contains the following fields:
- `image`: `PIL.Image` containing the extracted panel.
- `panel_name`: unique identifier for the row.
- `characters`: `tuple[str, ...]` of characters included in the comic strip the panel is part of.
- `themes`: `tuple[str, ...]` of theme in the comic strip the panel is part of.
- `color`: `str` indicating whether the panel is grayscale or in color.
- `caption`: [BLIP-2_OPT_6.7B](https://huggingface.co/docs/transformers/main/model_doc/blip-2) generated caption from the panel.
- `year`: `int` storing the year the specific panel was released.
> **OPT-6.7B has a non-commercial use license and so this dataset cannot be used for commercial projects. If you need a dataset for commercial use please see [this similar dataset](https://huggingface.co/datasets/afmck/peanuts-flan-t5-xl) that uses Flan-T5-XL, which allows for commercial use.**
Character and theme information was extracted from [Peanuts Wiki (Fandom)](https://peanuts.fandom.com/wiki/Peanuts_Wiki) using [Beautiful Soup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/).
Images were extracted from [Peanuts Search](https://peanuts-search.com/).
Only strips with the following characters were extracted:
```
- "Charlie Brown"
- "Sally Brown"
- "Joe Cool" # Snoopy alter-ego
- "Franklin"
- "Violet Gray"
- "Eudora"
- "Frieda"
- "Marcie"
- "Peppermint Patty"
- "Patty"
- "Pig-Pen"
- "Linus van Pelt"
- "Lucy van Pelt"
- "Rerun van Pelt"
- "Schroeder"
- "Snoopy"
- "Shermy"
- "Spike"
- "Woodstock"
- "the World War I Flying Ace" # Snoopy alter-ego
```
### Extraction Details
Panel detection and extraction was done using the following codeblock:
```python
def check_contour(cnt):
area = cv2.contourArea(cnt)
if area < 600:
return False
_, _, w, h = cv2.boundingRect(cnt)
if w / h < 1 / 2: return False
if w / h > 2 / 1: return False
return True
def get_panels_from_image(path):
panels = []
original_img = cv2.imread(path)
gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
invert = 255 - opening
cnts, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
idx = 0
for cnt in cnts:
if not check_contour(cnt): continue
idx += 1
x,y,w,h = cv2.boundingRect(cnt)
roi = original_img[y:y+h,x:x+w]
panels.append(roi)
return panels
```
`check_contour` will reject panels with `area < 600` or with aspect ratios larger than `2` or smaller than `0.5`.
Grayscale detection was done using the following codeblock:
```python
def is_grayscale(panel):
LAB_THRESHOLD = 10.
img = cv2.cvtColor(panel, cv2.COLOR_RGB2LAB)
_, ea, eb = cv2.split(img)
de = abs(ea - eb)
mean_e = np.mean(de)
return mean_e < LAB_THRESHOLD
```
Captioning was done using the standard BLIP-2 pipeline shown in the [Huggingface docs](https://huggingface.co/docs/transformers/main/model_doc/blip-2) using beam search over 10 beams and a repetition penalty of `2.0`.
Raw captions are extracted and no postprocessing is applied. You may wish to normalise captions (such as replacing "cartoon" with "peanuts cartoon") or incorporate extra metadata into prompts. |