File size: 9,350 Bytes
a5c4e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5356f
 
 
a5c4e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5356f
a5c4e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5356f
a5c4e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5356f
a5c4e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""CNN/DailyMail Summarization dataset, non-anonymized version."""

import hashlib
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_DESCRIPTION = """\
CNN/DailyMail non-anonymized summarization dataset.

There are two features:
  - article: text of news article, used as the document to be summarized
  - highlights: joined text of highlights with <s> and </s> around each
    highlight, which is the target summary
"""

# The second citation introduces the source data, while the first
# introduces the specific form (non-anonymized) we use here.
_CITATION = """\
@article{DBLP:journals/corr/SeeLM17,
  author    = {Abigail See and
               Peter J. Liu and
               Christopher D. Manning},
  title     = {Get To The Point: Summarization with Pointer-Generator Networks},
  journal   = {CoRR},
  volume    = {abs/1704.04368},
  year      = {2017},
  url       = {http://arxiv.org/abs/1704.04368},
  archivePrefix = {arXiv},
  eprint    = {1704.04368},
  timestamp = {Mon, 13 Aug 2018 16:46:08 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/SeeLM17},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{hermann2015teaching,
  title={Teaching machines to read and comprehend},
  author={Hermann, Karl Moritz and Kocisky, Tomas and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil},
  booktitle={Advances in neural information processing systems},
  pages={1693--1701},
  year={2015}
}
"""

_DL_URLS = {
    # pylint: disable=line-too-long
    "cnn_stories": "https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ",
    "dm_stories": "https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfM1BxdkxVaTY2bWs",
    "test_urls": "https://raw.githubusercontent.com/abisee/cnn-dailymail/master/url_lists/all_test.txt",
    "train_urls": "https://raw.githubusercontent.com/abisee/cnn-dailymail/master/url_lists/all_train.txt",
    "val_urls": "https://raw.githubusercontent.com/abisee/cnn-dailymail/master/url_lists/all_val.txt",
    # pylint: enable=line-too-long
}

_HIGHLIGHTS = "highlights"
_ARTICLE = "article"

_SUPPORTED_VERSIONS = [
    # Using cased version.
    datasets.Version("3.0.0", "Using cased version."),
    # Same data as 0.0.2
    datasets.Version("1.0.0", ""),
    # Having the model predict newline separators makes it easier to evaluate
    # using summary-level ROUGE.
    datasets.Version("2.0.0", "Separate target sentences with newline."),
]


_DEFAULT_VERSION = datasets.Version("3.0.0", "Using cased version.")


class CnnDailymailConfig(datasets.BuilderConfig):
    """BuilderConfig for CnnDailymail."""

    def __init__(self, **kwargs):
        """BuilderConfig for CnnDailymail.

        Args:

          **kwargs: keyword arguments forwarded to super.
        """
        super(CnnDailymailConfig, self).__init__(**kwargs)


def _get_url_hashes(path):
    """Get hashes of urls in file."""
    urls = _read_text_file(path)

    def url_hash(u):
        h = hashlib.sha1()
        try:
            u = u.encode("utf-8")
        except UnicodeDecodeError:
            logger.error("Cannot hash url: %s", u)
        h.update(u)
        return h.hexdigest()

    return {url_hash(u): True for u in urls}


def _get_hash_from_path(p):
    """Extract hash from path."""
    basename = os.path.basename(p)
    return basename[0 : basename.find(".story")]


def _find_files(dl_paths, publisher, url_dict):
    """Find files corresponding to urls."""
    if publisher == "cnn":
        top_dir = os.path.join(dl_paths["cnn_stories"], "cnn", "stories")
    elif publisher == "dm":
        top_dir = os.path.join(dl_paths["dm_stories"], "dailymail", "stories")
    else:
        logger.fatal("Unsupported publisher: %s", publisher)
    files = sorted(os.listdir(top_dir))

    ret_files = []
    for p in files:
        if _get_hash_from_path(p) in url_dict:
            ret_files.append(os.path.join(top_dir, p))
    return ret_files


def _subset_filenames(dl_paths, split):
    """Get filenames for a particular split."""
    assert isinstance(dl_paths, dict), dl_paths
    # Get filenames for a split.
    if split == datasets.Split.TRAIN:
        urls = _get_url_hashes(dl_paths["train_urls"])
    elif split == datasets.Split.VALIDATION:
        urls = _get_url_hashes(dl_paths["val_urls"])
    elif split == datasets.Split.TEST:
        urls = _get_url_hashes(dl_paths["test_urls"])
    else:
        logger.fatal("Unsupported split: %s", split)
    cnn = _find_files(dl_paths, "cnn", urls)
    dm = _find_files(dl_paths, "dm", urls)
    return cnn + dm


DM_SINGLE_CLOSE_QUOTE = "\u2019"  # unicode
DM_DOUBLE_CLOSE_QUOTE = "\u201d"
# acceptable ways to end a sentence
END_TOKENS = [".", "!", "?", "...", "'", "`", '"', DM_SINGLE_CLOSE_QUOTE, DM_DOUBLE_CLOSE_QUOTE, ")"]


def _read_text_file(text_file):
    lines = []
    with open(text_file, "r", encoding="utf-8") as f:
        for line in f:
            lines.append(line.strip())
    return lines


def _get_art_abs(story_file, tfds_version):
    """Get abstract (highlights) and article from a story file path."""
    # Based on https://github.com/abisee/cnn-dailymail/blob/master/
    #     make_datafiles.py

    lines = _read_text_file(story_file)

    # The github code lowercase the text and we removed it in 3.0.0.

    # Put periods on the ends of lines that are missing them
    # (this is a problem in the dataset because many image captions don't end in
    # periods; consequently they end up in the body of the article as run-on
    # sentences)
    def fix_missing_period(line):
        """Adds a period to a line that is missing a period."""
        if "@highlight" in line:
            return line
        if not line:
            return line
        if line[-1] in END_TOKENS:
            return line
        return line + " ."

    lines = [fix_missing_period(line) for line in lines]

    # Separate out article and abstract sentences
    article_lines = []
    highlights = []
    next_is_highlight = False
    for line in lines:
        if not line:
            continue  # empty line
        elif line.startswith("@highlight"):
            next_is_highlight = True
        elif next_is_highlight:
            highlights.append(line)
        else:
            article_lines.append(line)

    # Make article into a single string
    article = " ".join(article_lines)

    if tfds_version >= "2.0.0":
        abstract = "\n".join(highlights)
    else:
        abstract = " ".join(highlights)

    return article, abstract


class CnnDailymail(datasets.GeneratorBasedBuilder):
    """CNN/DailyMail non-anonymized summarization dataset."""

    BUILDER_CONFIGS = [
        CnnDailymailConfig(name=str(version), description="Plain text", version=version)
        for version in _SUPPORTED_VERSIONS
    ]

    def _info(self):
        # Should return a datasets.DatasetInfo object
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    _ARTICLE: datasets.Value("string"),
                    _HIGHLIGHTS: datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/abisee/cnn-dailymail",
            citation=_CITATION,
        )

    def _vocab_text_gen(self, paths):
        for _, ex in self._generate_examples(paths):
            yield " ".join([ex[_ARTICLE], ex[_HIGHLIGHTS]])

    def _split_generators(self, dl_manager):
        dl_paths = dl_manager.download_and_extract(_DL_URLS)
        train_files = _subset_filenames(dl_paths, datasets.Split.TRAIN)
        # Generate shared vocabulary

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": train_files}),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"files": _subset_filenames(dl_paths, datasets.Split.VALIDATION)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"files": _subset_filenames(dl_paths, datasets.Split.TEST)}
            ),
        ]

    def _generate_examples(self, files):
        for p in files:
            article, highlights = _get_art_abs(p, self.config.version)
            if not article or not highlights:
                continue
            fname = os.path.basename(p)
            yield fname, {
                _ARTICLE: article,
                _HIGHLIGHTS: highlights,
                "id": _get_hash_from_path(fname),
            }