aarontung commited on
Commit
dcd58eb
1 Parent(s): 833e4cd

Create cifar10.py

Browse files
Files changed (1) hide show
  1. cifar10.py +121 -0
cifar10.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """CIFAR-10 Data Set"""
18
+
19
+
20
+ import pickle
21
+
22
+ import numpy as np
23
+
24
+ import datasets
25
+ from datasets.tasks import ImageClassification
26
+
27
+
28
+ _CITATION = """\
29
+ @TECHREPORT{Krizhevsky09learningmultiple,
30
+ author = {Alex Krizhevsky},
31
+ title = {Learning multiple layers of features from tiny images},
32
+ institution = {},
33
+ year = {2009}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images
39
+ per class. There are 50000 training images and 10000 test images.
40
+ """
41
+
42
+ _DATA_URL = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
43
+
44
+ _NAMES = [
45
+ "airplane",
46
+ "automobile",
47
+ "bird",
48
+ "cat",
49
+ "deer",
50
+ "dog",
51
+ "frog",
52
+ "horse",
53
+ "ship",
54
+ "truck",
55
+ ]
56
+
57
+
58
+ class Cifar10(datasets.GeneratorBasedBuilder):
59
+ """CIFAR-10 Data Set"""
60
+
61
+ BUILDER_CONFIGS = [
62
+ datasets.BuilderConfig(
63
+ name="plain_text",
64
+ version=datasets.Version("1.0.0", ""),
65
+ description="Plain text import of CIFAR-10 Data Set",
66
+ )
67
+ ]
68
+
69
+ def _info(self):
70
+ return datasets.DatasetInfo(
71
+ description=_DESCRIPTION,
72
+ features=datasets.Features(
73
+ {
74
+ "img": datasets.Image(),
75
+ "label": datasets.features.ClassLabel(names=_NAMES),
76
+ }
77
+ ),
78
+ supervised_keys=("img", "label"),
79
+ homepage="https://www.cs.toronto.edu/~kriz/cifar.html",
80
+ citation=_CITATION,
81
+ task_templates=ImageClassification(image_column="img", label_column="label"),
82
+ )
83
+
84
+ def _split_generators(self, dl_manager):
85
+ archive = dl_manager.download(_DATA_URL)
86
+
87
+ return [
88
+ datasets.SplitGenerator(
89
+ name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
90
+ ),
91
+ datasets.SplitGenerator(
92
+ name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
93
+ ),
94
+ ]
95
+
96
+ def _generate_examples(self, files, split):
97
+ """This function returns the examples in the raw (text) form."""
98
+
99
+ if split == "train":
100
+ batches = ["data_batch_1", "data_batch_2", "data_batch_3", "data_batch_4", "data_batch_5"]
101
+
102
+ if split == "test":
103
+ batches = ["test_batch"]
104
+ batches = [f"cifar-10-batches-py/{filename}" for filename in batches]
105
+
106
+ for path, fo in files:
107
+
108
+ if path in batches:
109
+ dict = pickle.load(fo, encoding="bytes")
110
+
111
+ labels = dict[b"labels"]
112
+ images = dict[b"data"]
113
+
114
+ for idx, _ in enumerate(images):
115
+
116
+ img_reshaped = np.transpose(np.reshape(images[idx], (3, 32, 32)), (1, 2, 0))
117
+
118
+ yield f"{path}_{idx}", {
119
+ "img": img_reshaped,
120
+ "label": labels[idx],
121
+ }